Math, asked by gkriti7748, 1 year ago

Find the parametric form of the circle x²+y²+px+py

Answers

Answered by Anonymous
1

Answer:-

\boxed{ \bigg( \:   \frac{p}{ \sqrt{2} }  \cos( \theta)    -  \frac{p}{2} \:  ,\: \frac{p}{ \sqrt{2} }  \sin( \theta)  -  \frac{p}{2} \bigg)} \:

Explanation :-

According to the question,

 \implies \:  {x}^{2}  +  {y}^{2}  + px + py = 0

We know that ,

The centre of a circle is lies →

 \: at \: (   \frac{ - g}{2}  \: , \frac{ - h}{2}  \: ) \\  \\

Now ,

The centre of given Circle is at

 \implies  \:  \big(  \frac{ - p}{2},   \:  \:  \frac{ - p}{2}  \big) \\  \\

radius \:  =  \sqrt{ \frac{ {p}^{2} }{2} }  =  \frac{p}{ \sqrt{2} }  \\

Therefore ,

Perimeters are ↓

 \implies \: x -   \big(\frac{ - p}{2}  \big) =  \frac{p}{ \sqrt{2} }  \cos( \theta)  \\  \\  \implies \:  \boxed{x = \frac{p}{ \sqrt{2} }  \cos( \theta)    -  \frac{p}{2} } \\  \\ and \\  \\  \implies \: y -  \big( \frac{ - p}{2}  \big) =  \frac{p}{ \sqrt{2} }  \sin( \theta)  \\  \\  \implies \: \boxed{ y =  \frac{p}{  \: \sqrt{2} }  \sin( \theta)  -  \frac{p}{2} }

 \therefore \: perimeters \\  \\  \implies \:  \boxed{ \bigg( \:   \frac{p}{ \sqrt{2} }  \cos( \theta)    -  \frac{p}{2} \: , \: \frac{p}{ \sqrt{2} }  \sin( \theta)  -  \frac{p}{2} \bigg)}

Similar questions