Find the partial fraction of 3x+2/(x+1) (2x^2+3)
Answers
Answered by
0
How do I solve the partial fraction (x^2+3x)/(x^2+1) (x+1)^2?
Note that
(x²+3x)/(x²+1)(x+1)²={(x+1)²+(x+1)-2}/(x²+1)(x+1)²=(1/x²+1)+1/(x²+1)(x+1)-2/(x²+1)(x+1)²
So we need only break down the kast two terms into partial fractions:
(i) Let 1/(x²+1)(x+1)=(ax+b)/(x²+1)+c(x+1)
1=(ax+b)(x+1)+c(x²+1)
x=-1→
c=½ ■
x=0→1=b+½→
b=½ ■
compare x²-term→0=a+c→
a=-½ ■
(ii) Let 1/(x²+1)(x+1)²=(Ax+B)/(x²+1)+C/(x+1)+D(x+1)²
1=(Ax+B)(x+1)²+C(x+1)(x²+1)+D(x²+1)
x=-1→
D=½ ■
x=0→1=B+C+½
B+C=½
x³-terms→0≈A+C→A=-C
x-term→0=A+B+C+½→0=B+½→
B=-½ ■→
C=1 ■
A=-C=-1 ■
∴Required partial fractions :
1/(x²+1)+½(1-x)/(x²+1)+½/(x+1)-2(x+½)/(x²+1)+2/(x+1)-1/(x+1)²
=½(1/(x²+1)-(5/2)(x/(x²+1)-1/(x+1)²+½/(x+1)
Similar questions
Math,
4 months ago
Chemistry,
4 months ago
Business Studies,
4 months ago
Business Studies,
9 months ago
Social Sciences,
1 year ago
Economy,
1 year ago