Find the particular integral of
(D^2+1)y=x^2sin2x
Answers
Answer:
(D2+1)y=x2sinx
Let,yh=emx, be a trial solution of the corresponding homogeneous equation (D2+1)y=0 ,for some real or complex values of m.
that is (D2+1)emx=0
⟹(m2+1)emx=0
⟹m2+1=0(since,emx≠0 for any m)
⟹m=±i
So,the solution yh of the homogeneous equation is eix or e−ix
Thus yh is some linear combination of eix and e−ix:
yh=C1eix+C2e−ix
C1,C2∈R being arbitrary.
Now,let yp be the particular solution of the given differential equation.
Then,(D2+1)yp=x2sinx
⟹yp=1(D2+1)x2sinx=I1(D2+1)x2eix=Ieix1((D+i)2+1)x2=Ieix1(D2+2Di)x2=Ieix12Di⋅1(1−i2D)x2=Ieix12Di⋅(1−i2D)−1x2=Ieix12Di⋅(1+i2D−14D2+⋯)x2=Ieix12Di⋅(x2+ix−12)=Ieix12i∫(x2+ix−12)dx=Ieix12i(x33+ix22−x2)=Ieix(−ix36+x24+ix4)=I(cosx+isinx)(−ix36+x24+ix4)=−x36cosx+x4cosx+x24sinx
Hence the general solution y to the given differential equation is given by :
y=yh+yp=C1eix+C2e−ix−x36cosx+x4cosx+x24sinx;
C1,C2∈R being arbitrary