Math, asked by pappulakoushik2400, 2 months ago

find the particular integral of (D³+1)y=sin(2x+3)

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given Differential equation is

\bf:\longmapsto\: ({D}^{3} + 1)y  = sin(2x + 3)

Now we have to find the particular integral of this Differential equation.

We know,

If Differential equation is of the form

\rm :\longmapsto\:f(D)y = X \: then

\rm :\longmapsto\:P.I. \:  =  \: \dfrac{1}{f(D)} \: X

Thus,

\rm :\longmapsto\:Particular \: Integral \: is \:

\rm \:  =  \:  \: \dfrac{1}{ {D}^{3} + 1} sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1}{ {D}^{2} \times \: D  + 1} sin(2x + 3)

Now,

\green{\rm :\longmapsto\:Replace \:  {D}^{2} =  -  {2}^{2} =  - 4}

\rm \:  =  \:  \: \dfrac{1}{  - 4 \times \: D  + 1} sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1}{  - 4D  + 1} sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1}{  - 4D  + 1} \times \dfrac{1 + 4D}{1 + 4D}  sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1 + 4D}{1 -  {16D}^{2} } sin(2x + 3)

\green{\rm :\longmapsto\:Replace \:  {D}^{2} =  -  {2}^{2} =  - 4}

\rm \:  =  \:  \: \dfrac{1 + 4D}{1 - 16( -4 )} sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1 + 4D}{1 + 64} sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1 + 4D}{65} sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1}{65}sin(2x + 3)  + \dfrac{4}{65}D \: sin(2x + 3)

\rm \:  =  \:  \: \dfrac{1}{65}sin(2x + 3)  + \dfrac{4}{65} \: cos(2x + 3) \times 2

\rm \:  =  \:  \: \dfrac{1}{65}sin(2x + 3)  + \dfrac{8}{65} \: cos(2x + 3)

Similar questions