Math, asked by kaviyapachaiyappan, 5 hours ago

Find the
particular integral of
Y" + 2y'+ y = coshx​

Answers

Answered by pulakmath007
14

SOLUTION

TO DETERMINE

The particular integral of

y" + 2y' + y = cos hx

EVALUATION

Here the given differential equation is

y" + 2y' + y = cos hx

Which can be rewritten as

( D² + 2D + 1 ) y = cos hx

Now the particular integral

 \displaystyle \sf{ =  \frac{1}{ {D}^{2}  + 2D + 1} \cos hx }

 \displaystyle \sf{ =  \frac{1}{ {(D + 1)}^{2} } \cos hx }

 \displaystyle \sf{ =  \frac{1}{ {(D + 1)}^{2} }  \bigg( \:  \frac{ {e}^{x}  +  {e}^{ - x} }{2}  \bigg)}

 \displaystyle \sf{ =  \frac{1}{2}  \bigg[ \frac{1}{ {(D + 1)}^{2} }   \:  {e}^{x}  +  \frac{1}{ {(D + 1)}^{2} }  \:  {e}^{ - x} \:  \bigg] }

 \displaystyle \sf{ =  \frac{1}{2}  \bigg[ \frac{1}{ {(1 + 1)}^{2} }   \:  {e}^{x}  +  \frac{ {x}^{2} }{2}  \:  {e}^{ - x} \:  \bigg] }

 \displaystyle \sf{ =  \frac{1}{2}  \bigg[ \frac{1}{ {(2)}^{2} }   \:  {e}^{x}  +  \frac{ {x}^{2} }{2}  \:  {e}^{ - x} \:  \bigg] }

 \displaystyle \sf{ =  \frac{1}{2}  \bigg[  \:  \: \frac{ {e}^{x} }{4}   \:  +  \frac{ {x}^{2} }{2}  \:  {e}^{ - x} \:  \bigg] }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. M+N(dy/dx)=0 where M and N are function of

(A) x only

(B) y only

(C) constant

(D) all of these

https://brainly.in/question/38173299

2. This type of equation is of the form dy/dx=f1(x,y)/f2(x,y)

(A) variable seprable

(B) homogeneous

(C) exact

(D) none ...

https://brainly.in/question/38173619

Similar questions