Math, asked by lalnunpuia788, 2 months ago

Find the particular solution of the differential equation:
√(1-x²)dy=(sin^-1x-y)dx ,it being given that x=0 when y= 0​

Answers

Answered by TheValkyrie
13

Answer:

\sf y=(sin^{-1}x-1) +e^{-sin^{-1}x}

Step-by-step explanation:

Given:

\sf \sqrt{1-x^2} \:dy=(sin^{-1}x-y) \:dx

To Find:

The particular solution of the differential equation when x = 0  and y = 0

Solution:

\sf \sqrt{1-x^2} \:dy=(sin^{-1}x-y) \:dx

\sf \dfrac{dy}{dx} =\dfrac{sin^{-1}x-y}{\sqrt{1-x^2} }

\sf \dfrac{dy}{dx} =\dfrac{sin^{-1}x}{\sqrt{1-x^2} } -\dfrac{y}{\sqrt{1-x^2} }

\sf \dfrac{dy}{dx} +\dfrac{y}{\sqrt{1-x^2} }=\dfrac{sin^{-1}x}{\sqrt{1-x^2} }

This is in the form of a linear differential equation of the type,

\sf \dfrac{dy}{dx} + Py=Q

where P = 1/(√1 - x²) and Q = (sin⁻¹x/√1 - x²)

Finding the integrating factor,

\displaystyle \sf I.F=e^{\int\limits {P} \, dx}

\sf \implies e^{\displaystyle \sf\int\limits {\dfrac{1}{\sqrt{1-x^2} } } \, dx }

\sf \implies e^{sin^{-1}x}

Now the solution of the differential equation is given by,

\displaystyle \sf y\times (I.F)=\int\limits {Q\times (I.F)} \, dx +C

Substitute the values,

\displaystyle \sf y\times e^{sin^{-1}}x=\int\limits {\dfrac{sin^{-1}x}{\sqrt{1-x^2} }\times e^{sin^{-1}}x } \, dx

Let sin⁻¹x = t

dt = 1/(√1 - x²) dx

Hence,

\displaystyle \sf y\times e^{sin^{-1}x}=\int\limits {t\: e^t} \, dt

Integrating by parts,

\sf y\times e^{sin^{-1}x}=t\times e^t-e^t +C

\sf y\times e^{sin^{-1}x}=e^t(t-1) +C

Give back the value of t,

\sf y\times e^{sin^{-1}x}=e^{sin^{-1}x}(sin^{-1}x-1) +C

Dividing by \sf e^{sin^{-1}x},

\sf y=(sin^{-1}x-1) +Ce^{-sin^{-1}x}

Now put x = 0, y = 0,

We get,

C = 1

Therefore the particular solution of the differential equation is,

\sf y=(sin^{-1}x-1) +e^{-sin^{-1}x}


Anonymous: Wonderful :o
TheValkyrie: Thank you! :p
Answered by BrainlyThunder
28

{\fcolorbox{blue}{black}{\blue{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:@BrainlyThunder\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}

Answer in the attachment, From my Brother

Attachments:
Similar questions