find the particular solution of the differential equation,
(refer to attachment)
Answers
Answer:
Given differential equation is
on seperating the variables, we get
on integrating both sides
Also, given that y = π/2 when x = 1.
on putting these values
on substituting the value of C in 1, we get
which is the required solution.
@Delìnqúentìnvíncìblé
_________________________________
Step-by-step explanation:
Given differential equation is
\sf\dfrac{dy}{dx}=\dfrac{x(2\:log\:x+1)}{sin\:y+y\:cos\:y}
dx
dy
=
siny+ycosy
x(2logx+1)
on seperating the variables, we get
\sf (sin\:y+y\:cos\:y)dy=x(2\:log\:x+1)dx(siny+ycosy)dy=x(2logx+1)dx
\sf \implies sin\:y\:dy+y\:cos\:y\:dy=2x\:log\:x\:dx+x\:dx⟹sinydy+ycosydy=2xlogxdx+xdx
on integrating both sides
\displaystyle\sf \int sin\:y\:dy+\int y\:cos\:y\:dy=2\:\int x \:logx\:dx+\int x\:dx∫sinydy+∫ycosydy=2∫xlogxdx+∫xdx
\displaystyle\sf
\displaystyle\sf \implies -cos\:y+\left[y\int cos\:y\:dy-\int \left\{ \dfrac{d}{dy}(y)\int cos\:y\:dy \right\} dy \right]⟹−cosy+[y∫cosydy−∫{
dy
d
(y)∫cosydy}dy]
\displaystyle\sf
\displaystyle\sf = 2\left[ logx\int x \ dx - \int \left\{ \dfrac{d}{dx}logx \int x \ dx\right\}dx\right]+\dfrac{x^2}{2}=2[logx∫x dx−∫{
dx
d
logx∫x dx}dx]+
2
x
2
\displaystyle\sf
\displaystyle\sf\implies -cos\:y+y\:sin\:y-\int sin\:y\:dy = 2\left[ \dfrac{x^2}{2} logx - \int \left\{ \dfrac{1}{x}\dfrac{x^2}{2}\right\}dx\right] + \dfrac{x^2}{2}⟹−cosy+ysiny−∫sinydy=2[
2
x
2
logx−∫{
x
1
2
x
2
}dx]+
2
x
2
\displaystyle\sf
\displaystyle\sf\implies -cos\:y+y\:sin\:y+cos\:y=x^2\:logx-\int x\:dx + \dfrac{x^2}{2}⟹−cosy+ysiny+cosy=x
2
logx−∫xdx+
2
x
2
\displaystyle\sf
\displaystyle\sf\implies y\:sin\:y = x^2\;logx-\dfrac{x^2}{2}+\dfrac{x^2}{2}+C⟹ysiny=x
2
logx−
2
x
2
+
2
x
2
+C
\displaystyle\sf
\displaystyle\sf \implies y\:sin\:y = x^2 \: logx + C \:\;\;\;\dots (i)⟹ysiny=x
2
logx+C…(i)
\displaystyle\sf
\displaystyle\sf\pink\bigstar★ Also, given that y = π/2 when x = 1.
on putting these values
\displaystyle\sf
\displaystyle\sf\dfrac{\pi}{2}\:sin\left(\dfrac{\pi}{2}\right) = 1^2\:log(1)+C
2
π
sin(
2
π
)=1
2
log(1)+C
\displaystyle\sf \implies C = \dfrac{\pi}{2}⟹C=
2
π
on substituting the value of C in 1, we get
\boxed{\displaystyle\sf{\bf{y\:sin\:y= x^2\:logx+\dfrac{\boldsymbol\pi}{2}}}}
ysiny=x
2
logx+
2
π
which is the required solution.
@Delìnqúentìnvíncìblé