Math, asked by PragyaTbia, 1 year ago

Find the particular solution of the differential equation \log (\frac{dy}{dx})=3x+4y, given that y = 0 when x = 0.

Answers

Answered by kailash123456
0
3×0+4×0
0+0
=0
it is the correct answer
Answered by hukam0685
2

Answer:

particular solution:at x=0,y=0

log(\frac{dy}{dx} )=3x+4y\\\\is\\\\\frac{e^{-4y}}{-4} =\frac{e^{3x}}{3}-\frac{7}{12}\\ \\

Step-by-step explanation:

To find the solution of the given differential equation,we can solve this by variable separation method

taking antilog both sides

log(\frac{dy}{dx} )=3x+4y\\ \\ \\ \frac{dy}{dx} =e^{(3x+4y)} \\ \\ \\ \frac{dy}{dx} =e^{3x}.e^{4y}\\ \\ \\ \frac{dy}{e^{4y}}=e^{3x}\:dx\\ \\ \\ e^{-4y}dy=e^{3x}\:dx\\ \\

now integrate both sides

\int\:e^{-4y}dy=\int\:e^{3x}\:dx\\ \\ \frac{e^{-4y}}{-4} =\frac{e^{3x}}{3}+C\\ \\

is the general solution   of the given differential equation,so for particular solution

put x=y=0

\frac{e^{-4.0}}{-4} =\frac{e^{3.0}}{3}+C\\ \\ \frac{-1}{4} -\frac{1}{3}=C\\\\C=\frac{-7}{12} \\\\


particular solution:at x=0,y=0

log(\frac{dy}{dx} )=3x+4y\\\\is\\\\\frac{e^{-4y}}{-4} =\frac{e^{3x}}{3}-\frac{7}{12}\\ \\


Similar questions