Physics, asked by shreyasmail, 8 months ago

Find the percentage decrease in the weight of a body when taken to a height of 16 km above the surface of earth. (R = 6400 km )

Answers

Answered by shadowsabers03
5

The value of acceleration due to gravity at a height \sf{h} from the surface of the earth of radius \sf{R} is,

\longrightarrow\sf{g'=g\left(1+\dfrac{h}{R}\right)^{-2}\quad\quad\dots(1)}

But if \sf{h\ \textless\textless\ R,\quad\!\dfrac{h}{R}\ \textless\textless\ 1.} Hence we know that,

\longrightarrow\sf{(1+x)^{-2}=1-2x,\quad\! x\ \textless\textless\ 1}

Taking \sf{x=\dfrac{h}{R},}

\longrightarrow\sf{\left(1+\dfrac{h}{R}\right)^{-2}=1-\dfrac{2h}{R}}

Thus (1) becomes,

\longrightarrow\sf{g'=g\left(1-\dfrac{2h}{R}\right)\quad\quad\dots(2)}

Then percentage decrease in the value of acceleration due to gravity is,

\longrightarrow\sf{\delta g=\dfrac{g'-g}{g}\times100}

\longrightarrow\sf{\delta g=\dfrac{g\left(1-\dfrac{2h}{R}\right)-g}{g}\times100}

\longrightarrow\sf{\delta g=\dfrac{g\left[\left(1-\dfrac{2h}{R}\right)-1\right]}{g}\times100}

\longrightarrow\sf{\delta g=\left[1-\dfrac{2h}{R}-1\right]100}

\longrightarrow\sf{\delta g=-\dfrac{200h}{R}\quad\quad\dots(3)}

We know that, weight of a body,

\longrightarrow\sf{W=mg}

Hence percentage change in weight will be,

\longrightarrow\sf{\delta W=\delta m+\delta g}

Since mass of body remains constant, \sf{\delta m=0.} Then,

\longrightarrow\sf{\delta W=\delta g}

From (3),

\longrightarrow\sf{\delta W=-\dfrac{200h}{R}}

According to the question,

  • \sf{h=16\ km}

  • \sf{R=6400\ km}

Hence,

\longrightarrow\sf{\delta W=-\dfrac{200\times16}{6400}}

\longrightarrow\underline{\underline{\sf{\delta W=-0.5\,\%}}}

Hence the percentage decrease is \bf{0.5\,\%.} Negative sign indicates the decrease in the value.

Answered by PD626471
51
  • A body is taken 32 km above the surface of the earth
  • Radius of earth = 6400 km
  • Percentage decrease in weight of the body = ?

\begin{gathered}\begin{gathered}\sf :\implies g' = g\bigg\lgroup 1 - \dfrac{h}{R}\bigg\rgroup\;\;-eq(1)\\\end{gathered}\end{gathered}

  • So then the % decrease in the value of acceleration due to gravity is gonna be,

\begin{gathered}\begin{gathered}\sf :\implies \delta g = \dfrac{g - g'}{g} \times 100\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf :\implies \delta g = \dfrac{g - g\bigg\lgroup 1 - \dfrac{h}{R}\bigg\rgroup}{g} \times 100\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf :\implies \delta g = \dfrac{g\bigg\{ 1 - \bigg\lgroup 1 - \dfrac{h}{R}\bigg\rgroup\bigg\} }{g} \times 100\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf :\implies \delta g = \bigg\{ 1 - 1 + \dfrac{h}{R} \bigg\} 100\\\end{gathered}\end{gathered}

\sf :\implies \delta g = \dfrac{100h}{R} \;\; -eq(2)

  • Finally, the % change in weight will be given by,

\begin{gathered}\begin{gathered}\sf :\implies \delta W = \delta m + \delta g\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf :\implies \delta W = \dfrac{100h}{R}\\\end{gathered}\end{gathered}

\displaystyle \underline{\bigstar\:\textsf{According to the Question :}}

\sf\dashrightarrow \delta W = \dfrac{100\times 32}{6400}

\dashrightarrow\underline{\boxed{\purple{\mathfrak {\delta w = 0.5 \%}}}}

Similar questions