Math, asked by krishnal106, 1 year ago

Find the perimeter and area of a quadrilateral ABCD in which BC=12cm ,CD=9cm,BD=15cm,DA= 17cm and angle ABD=90°.

Answers

Answered by ashray948
67
Let me send you a pic for this answer
See the pic
It has your answer
Hope this helped
Attachments:
Answered by suchindraraut17
19

Area of ABCD = \bold {114\ cm^2}  

Step-by-step explanation:

In quadrilateral ABCD,

∠ABD = 90°,

Area of quadr ABCD = Area of ΔABD + Area of ΔBCD

In ΔABD,

By using pythagoras theorem,

(AD)^2 = (AB)^2+(BD)^2

(17)^2 =(AB)^2+(15)^2

289 = (AB)^2+ 225

289-225 = (AB)^2

64 =(AB)^2

AB = 8cm

So,Area of ΔABD = \frac{1}{2}\times Base\times Height

                            = \frac{1}{2}\times 15\times 8

                            = 60\ cm^2

Now,in ΔBCD,

s = \frac{12+9+15}{2}

  s= 18

Now,Area of ΔBCD = \sqrt{s(s-a)(s-b)(s-c)}

                                = \sqrt{18(18-12)(18-9)(18-15)}

                                 = \sqrt{18(6)(9)(3)}                                

                               = 54\ cm^2

Area of quadrilateral ABCD = Area of ΔABD+Area of ΔBCD

                                              =60\ cm^2 + 54\ cm^2

                                              =114\ cm^2

Hence,Area of ABCD = \bold {114\ cm^2}                    

Similar questions