Math, asked by sidhuv1557, 9 months ago

Find the perimeter and area of the quadrilateral ABCD in which AB = 17 cm, AD = 9 cm, CD = 12 cm, ACB = 90° and AC = 15 cm.

Answers

Answered by nikitasingh79
2

Given : In quadrilateral ABCD , AB = 17 cm, AD = 9 cm, CD = 12 cm, ACB = 90° and AC = 15 cm.

To find : Perimeter and area of the quadrilateral ABCD.

By using Pythagoras theorem in right ∆ACB :  

AB² = BC² + AC²

17² = BC² + 15²

BC² =17² - 15²

BC² = 289 - 225

BC² = 64  

BC = √64  

BC = 8 cm

Perimeter of quadrilateral ABCD , P = AB + BC + CD + DA  

P = 17 + 9 + 12 + 8  

P = 46 cm

Perimeter of quadrilateral ABCD = 46 cm

Area of right triangle △ACB,  A = ½ × base × height

A = 12 × 8 x 15

Area of right triangle △ACB = 60 cm²

Now, for the area of the ∆ ACD :  

Let a = 15 cm, b = 12 cm and c = 9 cm

Semi perimeter of Δ (s) = (a + b + c)/2

s = (15 + 12 + 9)/2

s = 36/2

s = 18 cm

By using Heron's formula :  

Area of ∆ ACD, A   = s√(s − a)(s − b)(s − c)  

A  = 18√(18 - 15)(18 - 12)(18 - 9)

A = √18 × (3 × 6) × 9

A =√(18 × 18) × (3 × 3)

A = 18 × 3

A = 54 cm²

Area of ∆ ACD = 54 cm²

Area of quadrilateral ABCD= Area of △ACB + Area of △ACD

Area of quadrilateral ABCD = 60 + 54 = 114 cm²

Hence,   the perimeter of quadrilateral ABCD is 46 cm and the area of quadrilateral ABCD is 114 cm².

HOPE THIS ANSWER WILL HELP YOU…..

Similar questions :

Find the area of a quadrilateral ABCD in which AB = 42 cm, BC = 21 cm, CD = 29 cm, DA = 34 cm and diagonal BD = 20 cm.

https://brainly.in/question/15908208

Find the area of a quadrilateral ABCD is which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.

https://brainly.in/question/15908221

Attachments:
Answered by Anonymous
2

Answer:

To find : Perimeter and area of the quadrilateral ABCD.

By using Pythagoras theorem in right ∆ACB :  AB² = BC² + AC²

17² = BC² + 15²

BC² =17² - 15²

BC² = 289 - 225

BC² = 64  BC = √64  BC = 8 cm

Perimeter of quadrilateral ABCD , P = AB + BC + CD + DA  P = 17 + 9 + 12 + 8  P = 46 cm

Perimeter of quadrilateral ABCD = 46 cm

Area of right triangle △ACB,  A = ½ × base × height

A = 12 × 8 x 15

Area of right triangle △ACB = 60 cm²

Now, for the area of the ∆ ACD :  Let a = 15 cm, b = 12 cm and c = 9 cm

Semi perimeter of Δ (s) = (a + b + c)/2

s = (15 + 12 + 9)/2

s = 36/2

s = 18 cm

By using Heron's formula :  Area of ∆ ACD, A   = s√(s − a)(s − b)(s − c)  A  = 18√(18 - 15)(18 - 12)(18 - 9)

A = √18 × (3 × 6) × 9

A =√(18 × 18) × (3 × 3)

A = 18 × 3

A = 54 cm

total area = 60+54=114cm

finally, perimeter=46cm

           area=114cm

Similar questions