Math, asked by hasitagummuluru, 11 months ago

find the perimeter and the area of quadrilateral ABCD in which
AB = 9 CM, AD = 12 CM, BD = 15 CM, CD = 17 CM, and ∠CBD =90°

Answers

Answered by mitajoshi11051976
28
\huge\bold\red{Answer~:}
 <b>

In ΔBCD,

 \angle BCD=90°

 {BC}^{2} ={BD}^{2}-{DC}^{2}

 = \sqrt{ {17}^{2} - {15}^{2} } \\ \\ = \sqrt{64} \\ \\ = 8 \: cm

Area of quadrilateral = ar(ΔBCD+ΔABD)

Area of ΔBCD :

 = \frac{1}{2} \times base \times height \\ \\ = \frac{1}{2} \times 15 \times 8 \\ \\ = 60 { \: cm}^{2}

Area of ΔABD :

semi perimeter :

 = \frac{a + b + c}{2} \\ \\ = \frac{15 + 12 + 9}{2} \\ \\ = 18 \: cm

Area :

 = \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = \sqrt{18 \times 3 \times 6 \times 9} \\ \\ = 54 \: {cm}^{2}

Area of quadrilateral :

 = (54 + 60) { \: cm}^{2} \\ \\ = 114 { \: cm}^{2}

\huge\bold\red{Answer~is~{114cm}^{2}}
Attachments:

hasitagummuluru: thank you
mitajoshi11051976: plz folow me
mitajoshi11051976: mark as brainliest answer
mitajoshi11051976: olz
mitajoshi11051976: pzl
Answered by deepanshirana2367
0

Step-by-step explanation:

hello what do you needto mran

Similar questions