Math, asked by dishars987, 1 year ago

Find the perimeter of a rectangle whose 1 side measures 10m and the diagnoal is 26m.

Answers

Answered by Sauron
13
\textbf{\large{\underline{Answer :-}}}

\sf{The\:Perimeter\:of \:the\:Rectangle\:is\:68 m}

\textbf{\large{\underline{Explanation :-}}}

\textsf{\underline{\underline{Given:}}}

1 side measures = 10 m

Diagonal = 26 m

\textsf{\underline{\underline{To find :}}}

The Perimeter of Rectangle

\textsf{\underline{\underline{Solution :}}}

Refer the Attachment for better understanding.

We can find the measure of the unknown side by - Pythagoras' theorem.

Take ∆ ACD

Hypotenuse = AD = 26 m

Base = CD = 10 m

Height = AC = x

Pythagoras' theorem :

\tt{\star\: Hypotenuse ^{2} = {Height}^{2} + {Base}^{2} }

\tt{\implies {26}^{2} = {x}^{2} + {10}^{2} }

\tt{\implies676 = {x}^{2} + 100 }

\tt{\implies676 - 100 = {x}^{2} }

\tt{\implies576 = {x}^{2} }

\tt{\implies \: x = \sqrt{576} }

Square root of 576

\begin{array}{r|l} 2 & 576 \\\cline{1-2} 2 & 288 \\\cline{1-2} 2 & 144 \\ \cline{1-2} 2 & 72 \\\cline{1-2} 2 & 36 \\\cline{1-2} 2 & 18 \\\cline{1-2} 3 & 9 \\\cline{1-2} 3 & 3 \\\cline{1-2} & 1\end{array}

\tt{\Rightarrow{\underline{2 \times 2}} \times {\underline{2 \times 2 }}\times {\underline{2 \times 2 }}\times{\underline {3 \times 3}}}

Make pairs of common numbers and take only one from them.

\tt{\Rightarrow3 \times 2 \times {\underline{2 \times 2 }}\times 2}

\tt{\Rightarrow6 \times 2 \times 2}

\tt{\Rightarrow6 \times 4}

\tt{\Rightarrow24}

\tt{\implies \: x = 24}

\large{\boxed{\bigstar{\sf \: {Another \: side \: = 24 \: m }}}}

As we know the Length and Breadth of Rectangle, we can find the Perimeter.

\tt{\implies2(l + b)}

\tt{\implies2(10 + 24)}

\tt{\implies20 + 48}

\tt{\implies68}

\large{\boxed{\bigstar{\sf \: { Perimeter = 68 \: m}}}}

\therefore\textsf{The\:Perimeter\:of\: the\:Rectangle\:is\:68 m}
Attachments:
Answered by siddhant207
0

Answer:

68m

Step-by-step explanation:

mark me as brainliest

Similar questions