Math, asked by aribthesoldiers, 3 days ago

find the perimeter of a rectangle, whose
area-8whole 2 and 3
length-5 whole 7 and 9

Attachments:

Answers

Answered by vaishubh1707
1

Given:

area (lb)\:  = 8  \frac{2}{3} \:   {mm}  ^{2}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\   \:  \:  \:  \:  \:  \:  \:  \: =   \frac{26}{3} \:   {mm}^{2}

length(l) = 5 \frac{7}{9}  \:  \: mm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  \frac{52}{9}  \:  \: mm

To find :

Perimeter = 2(l+b) = ?

Solution:

Area = length × breadth

 \frac{26}{3}  = l \times b \\

By substituting value of l in above equation, we get

 \frac{26}{3}  = \frac{52}{9}   \times  b \\  \\ b =  \frac{26}{3}  \times  \frac{9}{52}  \\  \\ b =  \frac{1}{1}  \times  \frac{3}{2}  \\  \\ b =  \frac{3}{2}  \: mm

Perimeter = 2(l+b)

 = 2( \frac{52}{9}  +  \frac{3}{2} )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  = 2( \frac{52(2) + 3(9)}{9 \times 2} ) \\ \\   =  \frac{104 + 27}{9}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  \frac{131}{9} \: mm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions