Math, asked by dipalidhumal967, 9 months ago

Find the perimeter of a rectangle with the diagonal 13 cm and length of one side is 12cm
a .33
b.34
c.35
d.36
whoever answers I will follow them please follow me​

Answers

Answered by Anonymous
164

Given :-

  • Diagonal of rectangle = 13 cm
  • Length of rectangle = 12cm

To find :-

  • Perimeter of rectangle

Solution :-

As we know that

★ Diagonal = √(breadth)² + (length)²

➟ D = √b² + l²

➟ 13 = √b² + (12)²

➟ 13 = √b² + 144

➟ (13)² = b² + 144

➟ 169 = b² + 144

➟ b² = 169 - 144

➟ b² = 25

➟ b = √25

➟ b = ± 5

Breadth never in negative

Hence, breadth of rectangle is 5 cm

Now, perimeter of rectangle

★ 2(length + breadth)

➟ 2(12 + 5)

➟ 2 × 17

➟ 34 cm

Hence,

  • Perimeter of rectangle is 34 cm

Additional Information

  • Area of rectangle = length × breadth
  • Area of rhombus = ½ × product of diagonals
  • Area of trapezium = ½ × sum parallel sides × height
  • Area of Parallelogram = base × height
  • Perimeter of square = 4 × side
  • Area of square = side × side

amitkumar44481: Fantastic :-)
Anonymous: Thanks bhai :)
Answered by Anonymous
91

QUESTION:-

✯Find the perimeter of a rectangle with the diagonal 13 cm and length of one side is 12cm

ANSWER:-

\large\underline\bold{GIVEN,}

\sf\dashrightarrow diagonal=13cm

\sf\dashrightarrow length\:of\:rectangle=12cm

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow perimeter\:of\:rectangle.

USING FORMULA,

\sf\large\:therefore diagonal\:of\:the\:rectangle = \sqrt{(breadth)^2+(length)^2}

\sf\therefore 13= \sqrt{(b)^2+(12)^2}

\sf\therefore 13= \sqrt{(b)^2+144}

\sf\therefore (13)^2= (b)^2+144

\sf\therefore 169=(b)^2+144

\sf\therefore 169-144=b^2

\sf\therefore b^2= 25

\sf\therefore b= \sqrt{25}

\sf\therefore  b= \pm 5

\sf\therefore note:- \:breadth\:is\:never\:negative,

therefore,

\sf\dashrightarrow breadth\:of\:rectangle\:is\:5\:cm

\large{\boxed{\bf{\therefore breadth=5cm}}}

NOW,

WE KNOW,

BREADTH =5CM

LENGTH=12CM

\sf\therefore finding\:the\:perimeter\:of\:rectangle,

USING FORMULA,

\sf\large\therefore perimeter=2 \times (length+breadth)

\sf\implies 2 \times (12+5)

\sf\implies 2 \times (17)

\sf\implies 34cm

\large{\boxed{\bf{\therefore perimeter\:of\:rectangle\:is\:34cm}}}

__________________

ADDITIONAL INFORMATION,

DIAGRAM OF RECTANGLE,

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,25){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){25}}\put(35,0){\line(0,1){25}}\put(17,-2){5cm}\put(18,-2){}\put(35,15){34cm}\put(18,0){ }\end{picture}

FEW FORMULAS FOR LEARNING,

  • AREA OF SQUARE=(SIDE)²
  • PERIMETER OF SQUARE = 4 ×(SIDE)
  • AREA OF TRIANGLE=1/2 × base ×height
  • AREA OF TRAPEZIUM= 1/2 × (A+B)
  • VOLUME OF CUBE =(L)³
  • VOLUME OF CUBOID= L×B×H
  • VOLUME OF CONE = 1/3 πr²h
  • VOLUME OF CYLINDER=πr²h

__________________

Similar questions