Math, asked by dipalidhumal967, 9 months ago

find the perimeter of a rectangle with the diagonal 13cm and length of one side is 12cm
a. 33
b.34
c.35
d.36​

Answers

Answered by chetnadhiman53
4

Step-by-step explanation:

The perimeter of a rectangle is 34

Answered by Divyansh50800850
8

\huge{\underline{\sf{Given:-}}}

\small{\orange{\sf{→Diagonal\: of \:rectangle\: => 13cm}}}

\small{\orange{\sf{Length\:of\:one\: side \:=> 12cm}}}

\huge{\underline{\sf{To \:Find:-}}}

\small{\orange{\sf{→Perimeter\: of \:rectangle \:=> ?}}}

\huge{\underline{\sf{Solution:-}}}

ᴛᴏ ғɪɴᴅ ᴛʜᴇ ᴘᴇʀɪᴍᴇᴛᴇʀ, ᴡᴇ ɴᴇᴇᴅ ᴛᴏ ғɪɴᴅ ᴛʜᴇ ʙʀᴇᴀᴅᴛʜ.

ʟᴇᴛ ᴀʙᴄᴅ ʀᴇᴘᴇʀᴇsᴇɴᴛ ᴛʜᴇ ɢɪᴠᴇɴ ʀᴇᴄᴛᴀɴɢʟᴇ ᴡɪᴛʜ ᴅɪᴀɢᴏɴᴀʟ ʙᴅ = 13ᴄᴍ

ᴡᴇ ᴋɴᴏᴡ ᴇᴀᴄʜ ᴀɴɢʟᴇ ᴏғ ᴀ ʀᴇᴄᴛᴀɴɢʟᴇ ɪs 90°

sᴏ, ʜᴇʀᴇ ᴡᴇ ᴄᴀɴ ᴜsᴇ ᴘʏᴛʜᴀɢᴏʀᴀs ᴛʜᴇᴏʀᴇᴍ ᴛᴏ ғɪɴᴅ ᴛʜᴇ ᴀɴᴏᴛʜᴇʀ sɪᴅᴇ ɪ.ᴇ ʙʀᴇᴀᴅᴛʜ

\angle{C} => 90^0

Now

ɪɴ ᴛʀɪᴀɴɢʟᴇ ʙᴅᴄ ,ʙᴅ ɪs ᴛʜᴇ ʜʏᴘᴏᴛᴇɴᴜsᴇ

→ By Pythagoras theorem

\blue{BD^2 = DC^2 + BC^2}

\blue{13^2 = 12^2 + BC^2}

\blue{BC^2 = 169 - 144}

\blue{BC^2 = 25}

\blue{BC = \sqrt{25}}

\green{BC = 5cm}

Thus, The other side is 5cm i.e breadth.

Then

\orange{Perimeter → 2(l+b)}

\pink{=> 2(12+5)}

\pink{=> 2(17)}

\pink{=> 34cm}

Hence, The perimeter of the rectangle is 34cm

Similar questions