Math, asked by Ramanpatil71, 6 months ago

find the perimeter of a square board whose each side is 13 cm​

Answers

Answered by Anonymous
10

perimeter of a square= sum of all sides

one side=13cm

all sides=13+13+13+13=52cm

Answered by MяMαgıcıαη
97

\rule{200}4

\underline{\underline{\sf{ \color{red}{\qquad Given\:: \qquad}  }}}

  • Side of a square board = 13 cm

\underline{\underline{\sf{ \color{red}{\qquad To\:Find\:: \qquad}  }}}

  • Perimeter of a square board

\underline{\underline{\sf{ \color{red}{\qquad Diagram\:: \qquad}  }}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large 13\ cm}\put(4.4,2){\bf\large 13\ cm}\end{picture}

\underline{\underline{\sf{ \color{red}{\:\:\:\purple\dag\:As\:we\:know\:that\:\purple\dag\:\:\:}  }}}

{\red\bigstar\:\underline{\boxed {\bold \green {Perimeter_{(square)}\:=\:4\:\times\:side}}}}

Putting all values :-

\:\:\:\:\:\longmapsto \sf{4\:\times\:side}

\:\:\:\:\:\longmapsto \sf{4\:\times\:13}

\:\:\:\:\:\longmapsto \underline{\sf{52}}

\boxed {\frak {\therefore \purple {Perimeter_{(square\:board)}\:\leadsto\:52\:cm}}}\:\orange\bigstar

\:\:\:\:\:\:\:\large\underbrace{\underline{\sf{\blue\bigstar\:Some\:properties\:of\:square\:\blue\bigstar}}}

  • All 4 interior angles of square = 90°.

  • All sides of square are equal.

  • Area of square = (side)².

  • Perimeter of square = 4 × side.ㅤ(used above)

  • Opposite sides of sq. are parallel to each other.

  • Diagonals of sq. bisect each other at 90°.

  • Diagonals of square are equal.

  • Square have 4 sides and 4 vertices.

  • The diagonal of sq. divides it into 2 similar isosceles triangles.

  • The length of diagonals of sq. is greater than length of it's sides.

\underline{\underline{\sf{ \color{red}{\qquad Note\:: \qquad}  }}}

  • Dear user if you are not able to see the diagram from app. Please see it from the the site (brainly.in). It will be correctly displayed there.

\rule{200}4


Anonymous: Amazing!
Similar questions