Math, asked by anjanaarya1972, 5 months ago

Find the perimeter of a square whose area is 196 sq.cm.
Pls answer my question!!With the correct answer!!!!!

Answers

Answered by jaycan9092
0

Answer:

56

Step-by-step explanation:

find the square root of the area, then multiply it by 4

Answered by DüllStâr
115

 \pink{\frak {Given} }

 \\

  • Area of square = 196 cm²

 \\

 \gray{ \frak{To \: find}}

 \\

  • Perimeter of square

 \\

 \blue{ \frak{Solution: }}

 \\

First Let's find side of square:

 \\

\bf\dag\underline{\frak{As \: we \: know}}

 \\

\bigstar \boxed{\rm Area \: of \: square =  {side}^{2} }

 \\

By using this formula we can find value of side of square

 \\

 \dashrightarrow \sf Area \: of \: square =  {side}^{2}

 \\

 \dashrightarrow \sf196=  {side}^{2}

 \\

 \dashrightarrow \sf{side}^{2}  = 196

 \\

 \dashrightarrow \sf{side} = \sqrt{196}

 \\

 \dashrightarrow \sf{side} = {196}^{ \frac{1}{2} }

 \\

 \dashrightarrow \sf{side} = {(2 \times 7 \times 2 \times 7)}^{ \frac{1}{2} }

 \\

 \dashrightarrow \sf{side} = {(\underbrace{2 \times 2} \times\underbrace{ 7 \times 7})}^{ \frac{1}{2} }

 \\

 \dashrightarrow \sf{side} = {( {2}^{2} \times  {7}^{2}  )}^{ \frac{1}{2} }

 \\

 \dashrightarrow \sf{side} = {(2 \times 7 )}^{ \frac{2}{2} }

 \\

 \dashrightarrow \sf{side} = {(2 \times 7 )}^{\cancel \frac{2}{2} }

 \\

 \dashrightarrow \sf{side} = {2 \times 7 }

 \\

 \dashrightarrow \underline{ \boxed{ \sf{side} =14 \: cm}}

 \\

Finally Let's find perimeter of square:-

 \\

we know:-

 \\

\bigstar \boxed{\rm perimeter \: of \: square = 4 \times side}

 \\

By using this formula we can find value of Perimeter of square

 \\

\leadsto \sf perimeter \: of \: square = 4 \times side

 \\

\leadsto \sf perimeter \: of \: square = 4 \times 14

 \\

\leadsto \underline{ \boxed{\sf perimeter \: of \: square =56 \: cm}}

 \\  \\

\therefore \:  \underline{\sf\blue {perimeter \: of \: square = \bf{56 \: cm}}}

 \\  \\

know more:-

 \\

Formulas for Area:-

 \\

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

Similar questions