Math, asked by munna12t, 2 months ago

find the perimeter of a square whose area is 324 cm²​

Answers

Answered by nikkiyamsani
0

Answer:

perimeter of square = 4 s

324=4S

s= 324/4

S = 81

Answered by INSIDI0US
6

Step-by-step explanation:

Question :-

  • Find the perimeter of square whose area is 324 cm².

To Find :-

  • Perimeter of square.

Solution :-

Given :

  • Area = 324 cm²

According to the question,

By using the formula,

{\sf{\longrightarrow Area\ of\ square\ =\ a^2}}

Where,

  • a = length of the side

Finding side of square :

{\sf{\longrightarrow Area\ of\ square\ =\ a^2}}

{\sf{\longrightarrow 324\ =\ a^2}}

{\sf{\longrightarrow \sqrt{324}\ =\ a}}

{\sf{\longrightarrow 18\ =\ a}}

{\sf{\longrightarrow a\ =\ 18\ cm}}

Now, let's find the perimeter of square.

\rule{300}{2}

By using the formula,

{\sf{\longrightarrow Perimeter\ of\ square\ =\ 4a}}

Where,

  • a = length of the side

Finding perimeter of square :

{\sf{\longrightarrow Perimeter\ of\ square\ =\ 4a}}

{\sf{\longrightarrow 4(18)}}

{\sf{\longrightarrow 4 \times 18}}

{\sf{\longrightarrow 72\ cm}}

\therefore Hence, perimeter of square is 72 cm.

More To Know :-

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Similar questions