Math, asked by amansmali005, 3 months ago

find the perimeter of a square whose diagonal.
is
10 √2 cm

Answers

Answered by qaxinida
5

Step-by-step explanation:

by Pythagoras theorm

H²=B²+P²

10√2×10√2=s²+s²

100×√2²=2s²

100×2=2s²

200/2=s²

100=s²

s=10

so each side of a square is equal to 10cm

perimeter=4×side

=4×10

=40cm

hope this will help you

Answered by aryan073
9

Given :

• Diagonal of the square =\tt{10 \sqrt{2} cm}

To Find :

• The perimeter of a square =?

Formula :

Pythagoras Theorem :

>> =+

Solution :

Let each side of the square measure be s

According to Pythagoras Theorem :

\\ \\ \implies\displaystyle\sf{H^{2}=B^{2}+P^{2}}

 \\    \\ \implies \displaystyle \sf \:  {(10 \sqrt{2} )}^{2}  =  {s}^{2}  +  {s}^{2}  \\   \\ \\  \implies \displaystyle \sf \: (10  \times 10 \times  \sqrt{2}  \times  \sqrt{2} ) = 2 {s}^{2}  \\  \\  \\  \implies \displaystyle \sf \: 200 = 2 {s}^{2}  \\  \\  \\  \implies \displaystyle \sf \:  {s}^{2}  =  \frac{200}{2}  \\  \\  \\  \implies \displaystyle \sf \:  {s}^{2}  = 100 \\  \\  \\  \implies  \displaystyle \boxed{ \sf{s = 10cm}}

So, each sides of the square is 10 cm

\\ \\ \red\bigstar\bf{Perimeter \: of \: square =4 \times \: side}

 \\  \\  \implies \displaystyle \sf \: perimeter \: of \: square = 4 \times side \\  \\  \\  \implies \displaystyle \sf \: perimeter \: of \: side = 4 \times 10cm \\  \\  \\  \implies \displaystyle \sf \: perimeter \: of \: square = 40cm

Hence, the perimeter of the square is 40cm.

Similar questions