Math, asked by naveen8318, 1 month ago

Find the perimeter of ΔABC if its sidesare 5/ 6 cm, 4/12 cmand 5/ 18 cm.

Answers

Answered by SugarCrash
11

\sf\large\underline{\underline{\red{\sf Question}}}:

  • Find the perimeter of ΔABC, if its sides are 5/6 cm, 4/12 cm and 5/18 cm.

\sf\large\underline{\underline{\red{\sf Solution}}}:

\green\bigstar\boxed{\mathfrak{Perimeter\green{_{\mathbb Triangle}}} = \textsf{Sum of all the sides}}

so,

\bf \sf\longmapsto Perimeter\green{_{triangle}} = \dfrac{5}{6}+\dfrac{4}{12}+\dfrac{5}{18}

\bf \sf\longmapsto Perimeter\green{_{triangle}} = \dfrac{5}{6}+\dfrac{1}{3}+\dfrac{5}{18}

\bf \sf\longmapsto Perimeter\green{_{triangle}} = \dfrac{5\times 3 + 1\times 6+5\times 1}{18}

\bf \sf\longmapsto Perimeter\green{_{triangle}} = \dfrac{15 + 6+5}{18}

\bf \sf\longmapsto Perimeter\green{_{triangle}} = \dfrac{26}{18}

\bf \sf\longmapsto Perimeter\green{_{triangle}} = \dfrac{13}{9}

Hence,

  • Perimeter of the triangle is 13/9 cm.
Answered by Eutuxia
6

Answer :

  • 7/6 cm

Given :

  • Side A = 5/6 cm
  • Side B = 4/12 cm
  • Side C = 5/18 cm

To find :

  • the perimeter of ΔABC

Solution :

⇒ Let's find the Perimeter of the Triangle.

\sf \longrightarrow Perimeter = a + b + c

\sf \longrightarrow Perimeter =  \dfrac{5}{6} + \dfrac{4}{12} +  \dfrac{5}{18}

\sf \longrightarrow Perimeter =  \dfrac{5}{6} + \dfrac{4}{12} +  \dfrac{5}{18} \: [ \because LCM = 36]

\sf \longrightarrow Perimeter =  \dfrac{5 \times 4}{6 \times 4} + \dfrac{4 \times 3}{12 \times 3 } +  \dfrac{5 \times 2}{18 \times 2}

\sf \longrightarrow Perimeter =  \dfrac{20}{36} + \dfrac{12}{36} +  \dfrac{10}{36}

\sf \longrightarrow Perimeter =  \dfrac{20 + 12 + 10}{36}

\sf \longrightarrow Perimeter =  \dfrac{42}{36}

\sf \longrightarrow Perimeter =  \dfrac{42 \div 6}{36 \div 6}

\sf \longrightarrow Perimeter =  \dfrac{7}{6} \: cm

  • Therefore, the Perimeter of the ΔABC is 7/6 cm.

Similar questions