Math, asked by sonalrampal04pbb1fo, 1 year ago

find the perimeter of an isosceles triangle right angle triangle having area 200 CM square

Answers

Answered by simransaini383
4
Let the triangle be ABC
AB=BC=x
Area = 1/2 (x.x)
200 = 1/2 x^2
x^2 = 400
Square rooting both side
x = 20
Therefore AB=BC=20
By Pythagoras theorem
AC= 20root2
Hence, perimeter= 20+20+20(1.41) = 68.2
Answered by Anonymous
39

\huge\underline\mathfrak{Answer:}

Let each equal side be x of an isosceles right triangle ABC. Then

Area of an isosceles right triangle ABC

\sf\frac{1}{2}(x\timesx)= \sf\frac{1}{2}x^2

But area of a triangle = \sf{200\:cm^2}

•°• \sf\frac{1}{2}x^2=200

\implies\sf{x^2=400=20\times}

\implies\sf{x=20cm}

•°• Hypotenuse AC of ABC

= \sf\sqrt{x^2+x^2} cm

= \sf\sqrt{2x^2}cm = \sqrt{2}x cm.

Now, the perimeter of an isosceles right triangle

= \sf{(x+x+}\sf\sqrt{2x)}cm

= \sf{(20+20+20}\sf\sqrt{2)}cm

= \sf{(40+20}\sf\sqrt{2}cm

202 (2 + 1) cm.

Similar questions