Math, asked by yash6582, 1 year ago

find the perimeter of each figure

Attachments:

Answers

Answered by MOSFET01
59
\huge {\mathfrak{\underline{\underline{Formula \: \colon}}}}

Consider \bold{\pi \: =\: 3.14}

Perimeter of semi-circle is \bold{(\pi r\: +\: d)}

Perimeter of rectangle is \bold{2(l \: + \: b)}

Perimeter is generally \bold{ sum \: of \: all \: sides}

Perimeter of quadrant is  \bold{\dfrac{1}{2} \pi r \: + \: 2r}

\bold{\underline{\underline{Solution \: 1 }}}

Rectangle + Semicircle

Length = 12 m

Breadth = 6 m

Diameter of Semicircle = 6 m

Radius of semicircle = 3 m

Total Perimeter = 2[l + b] + [πr + d]

\implies 2[12\: + \: 6] \: + \: [\pi (3) \: +\: 6]

\implies 2[18] \: + \: [15.42]

\implies 36 \: + \: 15.42

\implies \bold{51.42 \: m}

\bold{\underline{\underline{Solution \: 2}}}

Semicircle + Rectangle + Semicircle

Length = 28 cm

Radius of semicircles = 7 cm

Breadth of rectangle = Diameter of circle = 2r = 14 cm

Total Perimeter = 2[l + b] + 2[ πr + d]

\implies 2[ 28 \: + \: 14] \: + \: 2[\pi (7) \: + \: 14 ]

\implies 2[ 42] \: + \: 2[\pi (7) \: + \: 14 ]

\implies 2[42]\: + \: 2[35.99]

\implies 84 \: + \: 71.98

\implies \bold{155.98 \: cm}

\bold{\underline{\underline{Solution \: 3}}}

Radius of quadrant = 21 m

Perimeter of given quadrant is

\implies \bold{\dfrac{1}{2} \pi 21 \: + \: 2(21)}

\implies \bold{\dfrac{1}{2} \times \dfrac{22}{7} \times 21 \: + \: 2(21)}

\implies \bold{( 11 \times 3) + \: 42}

\implies \bold{ 33 \: + \: 42}

\implies \bold{ 75 \: m}

\bold{\underline{\underline{Solution \: 4 }}}

Total perimeter = Perimeter of triangle + Perimeter of semicircle

Perimeter of triangle = sum of all sides

\implies \bold{14\: + \: 21 \: + \: 21}

\implies \bold{14\: + \: 42}

\implies \bold{56\: cm}

Perimeter of semicircle = \bold{(\pi (7)\: +\: 14)}

= \bold{(\dfrac{22}{7} \times 7 \: +\: 14)}

= \bold{22\: + \: 14}

= \bold{36\: cm}

Total perimeter = (56 + 36) cm

Now total perimeter of given diagram is \bold{92\: cm}.

\bold{\underline{\underline{Solution \: 5}}}

Total Perimeter = Perimeter of circle - Perimeter of quadrant

Radius of circle = 2.1 m

Diameter of circle = 2 × 2.1

= 4.2 m

Total perimeter = 2πr -  \bold{\dfrac{1}{2} \pi r \: + \: 2r}

\implies 2\times \dfrac{22}{7} \times 2.1 - \bold{\dfrac{1}{2}\times \dfrac{22}{7} \times 2.1 \: + \: 2\times (2.1)}

\implies 13.2 \: - 7.5 \:

\implies  5.7 \: m\:

\bold{Thanks}

Anonymous: Nice answer Bhaiya !!
MOSFET01: welcom
Anonymous: Amazing! :)
MOSFET01: thanks
Anonymous: Msg me, please!
Answered by kumarisuman21486
18

Step-by-step explanation:

(a) 51.42cm²

(b) 155.98cm²

(c) 75cm²

(d) 92cm²

(e) 5.7cm²

Similar questions