Math, asked by chitteshchandra, 3 months ago

find the perimeter of (I) ∆ ABC (ii) the rectangle BCDE in this figure whose perimeter is grater​

Attachments:

Answers

Answered by Anonymous
15

 \huge\boxed{\underline{\bf { \red S \green O \pink L \blue U \orange T \purple I \red O \pink N \green{..}}}}\\

 \large \red \bigstar \:\boxed{ \green{\bf Perimeter_{(triangle)} = AB + BE + AE}} \\

Here

  • AB = 5/2 cm
  • BE = 2¾ = 11/4 cm
  • AE = 3⅗ = 18/5 cm

 \longmapsto \sf Perimeter = \frac{5}{2} + \frac{11}{4} +  \frac{18}{5} \\

\longmapsto \sf Perimeter = \frac{50 + 55 + 72}{20} \\

\longmapsto \sf Perimeter = \frac{177}{20} \:  cm\\

-------------------------------------------------------------

 \large \red \bigstar \:\boxed{ \green{\bf Perimeter_{(rectangle)} = 2( L + B ) }}\\

Here

  • Length = 2¾ = 11/4 cm
  • Breadth = 7/6 cm

\longmapsto \sf Perimeter = 2 \bigg( \frac{11}{4}  +  \frac{7}{6} \bigg) \\

\longmapsto \sf Perimeter = 2 \bigg(  \frac{33 + 14}{12} \bigg) \\

\longmapsto \sf Perimeter = 2 \bigg(  \frac{47}{12} \bigg) \\

\longmapsto \sf Perimeter = \frac{47}{6} \: cm \\

Triangle has more perimeter than rectangle

Similar questions