Math, asked by bablic196, 4 months ago

find the perimeter of rectangle whose dimension are length 75m breadth 25m​

Answers

Answered by MrHyper
219

\huge\sf\orange{an{\mathfrak{S}}wer:}

{}

\bf{{\underline{Given}}:}

  • Length = 75m
  • Breadth = 25m

\bf{{\underline{To~find}}:}

  • The Perimeter of the rectangle

\bf{{\underline{Solution}}:}

 \sf Perimeter \: of \: a \: rectangle = 2(l + b)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf = 2(75 + 25) \\  \sf = 2(100) \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf =  \orange{ \underline{ \boxed{ \bf 200m}}} \:  \:  \:  \:  \:  \:

\bf\therefore{{\underline{Required~answer}}:}

  • Perimeter of the rectangle is \sf  \orange{ \underline{ \boxed{ \bf 200m}}}
Answered by Anonymous
137

Answer:

{\Large \bigstar  \: \underline\frak\red{Given}}

  • Length of Rectangle = 75m
  • Breadth of Rectangle = 25 m

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \Large  \bigstar \: \underline\mathfrak \red{To \:  Find }

  • Primeter of Rectangle

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  \Large \bigstar \:  \underline\frak\red{Using \:  Formula }

  • Perimeter of Rectangle = 2(Lenght+Breadth)

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \Large  \bigstar \: \underline \frak \red{Solution}

{: \implies\sf \pink{Perimeter  \: of \:  Rectangle} =  \purple{2(Lenght+Breadth)}}

 {: \implies  \sf \pink{Perimeter } =  \purple{ 2(75 \: m+25 \:m)}}

 : \implies\sf \pink{Perimeter }= \purple {2 \times 100}

 :\implies\sf \pink{Perimeter} =  \purple{200 \: m}

\Large \bigstar : \underline{\boxed{ \sf{ \purple{P}{\frak {\purple{erimeter} = \pink{200 \:m}}}}}}  : \bigstar

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\Large  \bigstar \: \underline \frak \red{Therfore}

  • The Perimeter of Rectangle is 200 m.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \large  \bigstar \: \underline\frak \red{More  \: Useful  \: Formulae }

{\leadsto\:  \small\bf{Area \: of \: Rectangle =Length × Breadth}}

{\leadsto \: \small \bf{Diagonal \: of \: Rectangle = \sqrt{ {Length }^{2} + { Breadth}^{2} }}}

\leadsto\:  \small\bf{Area \: of \: Square } = {a}^{2}

\leadsto \:  \small\bf{Perimeter \: of \: Square = 4a }

 \leadsto\:  \small\bf{Diagonal \: of \: Square = a \sqrt{2} }

Similar questions