Math, asked by bhavya4244, 1 day ago

Find the perimeter of the rectangle whose length is 40cm and a diagonal is 41cm.
Explain it too.​

Answers

Answered by DaiwikPatel130806
0

Step-by-step explanation:

Length = 40 cm(Given)

Diagonal = 41 cm

Diagonal = \sqrt{(length)^{2}+(breadth)^{2}  }

41=\sqrt{(40)^{2}+b^{2}  }

1600+b^{2} =41^{2}

1600+b^{2} =1681

b^{2} =1681-1600

b^{2} =81

b=\sqrt{81}

b=\sqrt{9*9}

∴b=9 cm

Perimeter of a rectangle = 2(l+b)

                                         = 2(40+9)

                                         = 2*49

                                         = 98 cm

Hence, the perimeter of the rectangle is 98 cm.

Hope this helps you.

Please mark me as a Brainliest if this helped...

Answered by shubhankarmahashabde
0

Answer:

98cm

Step-by-step explanation:

Let us consider a rectangle ABCD    TIP: Draw diagram for better understanding                                            

Therefore given,

AB = CD = 40cm;

BD(diagonal) = 41cm

∠A = ∠B = ∠C = ∠D = 90°

To find,

AD and perimeter

Solution:

therefore, in triangle ABD of the rectangle, AB = 40cm, BD = 41cm and ∠BAD = 90°

therefore, using pythagoras theorm, i.e., P² + B² = H²

∴ AB² + AD² = BD²

  40² + AD² = 41²

 1600 + AD² = 1681

            AD²  = 1681 - 1600 = 81

Therefore,

AD = √81 = 9cm

therefore, perimeter of rectangle = 2( L + B )

                                                        =  2 × ( 40 + 9 )

                                                        = 2 × 49

                                                        = 98cm

Similar questions