Math, asked by chakrawartigzp986, 1 year ago

Find the perimeter of the rhombus, if lengths of its diagonals are 12cm and 16cm. ​

Answers

Answered by BrainlyConqueror0901
72

Answer:

\huge{\pink{\boxed{\green{\sf{PERMETER=40cm}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \orange{given}} \\  {\pink {\boxed{ \green{diagonal \: 1st(d1) = 12cm}}}} \\ {\pink {\boxed{ \green{diagonal \: 2nd(d2) = 16}}}} \\  \\ \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  { \blue{to \: find}}\\  {\purple {\boxed{ \red{perimeter \: of \: rhombus = }}}} \\

According to given question :

We know the properties of rhombus :

   \to \: diagonals \: bisects \: each \: other \: at \: 90 \degree \\  \to \: all \: sides \: are \: equal \: in \: rhombus \\  \to \: perimeter \: of \: rhombus = 4  \times side

So first we find side of rhombus :

we take a right angled traingle whose base is 6cm and perpendicular is 8cm.

  \to {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\   \to   {h}^{2}  =  {8}^{2}  +  {6}^{2}  \\ \to  {h}^{2}  = 64  + 36 \\  \to  {h} =  \sqrt{100}  \\ { \pink{ \boxed{  \green{\to h = 10cm}} }}\\  \\  \to perimeter \: of \: rhombus = 4 \times side \\  \to perimeter = 4 \times 10 \\{ \pink{ \boxed{ \green{ \to   perimeter = 40cm}}}}

_________________________________________

Similar questions