Math, asked by priyanshimishra494, 2 months ago

Find the perimeter of the square whose each side is -7 cm.​

Answers

Answered by hemant8bb
1

Step-by-step explanation:

Perimeter of square =4 xside

= 4x(-7)= -28 cm

Plz mark me as brainliiest

Answered by Anonymous
6

Correct Question-:

  • Find the perimeter of the square whose each side is 7 cm.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ Perimeter_{(Square)}  \: = \: 28 cm  }}}}}

Explanation-:

\mathrm{Given-:}

  • The side of square is 7 cm.

\mathrm{To\:Find-:}

  • The perimeter of square.

\dag{\mathrm{Solution\:of\:Question-:}}

  • \underbrace{\sf{Understanding \:the\:Concept-:}}

  • We have to find the Perimeter of Square whose each side is 7 cm long .

  • For this we need to put the known or given values in Formula of Perimeter of Square-:

As , We know That ,

  • \underline{\boxed{\star{\sf{\red{ Perimeter_{(Square)}  \: = \: 4 \times side }}}}}

\mathrm{Here-:}

  • Side or The length of each side of square is 7 cm

Now, Putting known Values in Formula-:

  • \longrightarrow {\mathrm{Perimeter_{Square}= 4 \times 7 }}

  • \longrightarrow {\mathrm{Perimeter_{Square}= 28 cm }}

\mathrm{Hence-:}

  • \underline{\boxed{\star{\sf{\blue{ Perimeter_{(Square)}  \: = \: 28 cm  }}}}}

_______________________________

More To Know-:

  • Formulas of area :

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

________________________________

Note -: Kindly view this Answer in website [ brainly.in]

_____________♡_________________

Similar questions