Math, asked by ronits087, 11 months ago

find the perimeter of the triangle
If the area of equilateral triangle is 16V3.m​

Answers

Answered by abini1202
5

Answer:

Step-by-step explanation:

Area of an equilateral triangle = 16✓3 cm²

✓3/4 × (Side)² = 16✓3

(Side)² = 16✓3×4/✓3

Side² = 64

Side = ✓64 = 8

Therefore,

Perimeter of an equilateral triangle = 3 × (Side) = 3 × 8 = 24 cm

Answered by Anonymous
7

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • Perimeter of the equilateral \triangle = 24 Cm

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • The area of equilateral triangle is 16√3 Cm².

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • Perimeter of the equilateral triangle = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\red{\:\:\: Formula\:used\: here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Area = \frac{\sqrt{3} }{4} \times Side^2}

\sf\underline{\red{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\longrightarrow \sf {16\sqrt{3} = \frac{\sqrt{3} }{4} \times (a)^2} \\\\

\longrightarrow \sf {16\sqrt{3} \times 4 = \sqrt{3} \times a^2} \\\\

\longrightarrow \sf {64\sqrt{3} = \sqrt{3} \times a^2} \\\\

\longrightarrow \sf {64 = a^2} \\\\

\longrightarrow \sf {\sqrt{64} = a} \\\\

\longrightarrow \sf {a = 8 \: Cm} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

  • The area of equilateral \triangle = 8 Cm

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture} \\\\

\sf\underline{\red{\:\:\: Again,Formula\:used\: here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Perimeter\:of\:\triangle = 3 \times Side}

\sf\underline{\red{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\longrightarrow \sf {Perimeter\:of\:the\:\triangle = 3 \times 8} \\\\

\longrightarrow \sf {Perimeter\:of\:the\:\triangle = 24\:Cm} \\\\

\sf\underline{\green{\:\:\: ThereFore:-\:\:\:}}

  • Perimeter of the equilateral \triangle = 24 Cm

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions