Math, asked by hawkins6148, 1 month ago

Find the perimeter of the triangle whose vertices are (−3,−5), (2,−5), and (2,7)

Answers

Answered by ishanmahendru5
0

Step-by-step explanation:

The Perimeter of a ΔABC is 12 units .

Step-by-step explanation:

Formula

Distance\ Formula = \sqrt{(x_{2} - x_{1})^{2} +(y_{2} - y_{1})^{2}}Distance Formula=

(x

2

−x

1

)

2

+(y

2

−y

1

)

2

As given

vertices of a triangle (3,2),(7,2) and (7,5).

Name the vertex A(3,2), B(7,2) and C(7,5).

Take the vertiex A(3,2) and B(7,2).

AB = \sqrt{(7 - 3)^{2} +(2 - 2)^{2}}AB=

(7−3)

2

+(2−2)

2

AB = \sqrt{(4)^{2} +(0)^{2}}AB=

(4)

2

+(0)

2

AB = \sqrt{16}AB=

16

\sqrt{16} = 4

16

=4

AB = 4 units

Take the vertiex B(7,2) and C(7,5)

BC = \sqrt{(7 - 7)^{2} +(5 - 2)^{2}}BC=

(7−7)

2

+(5−2)

2

BC = \sqrt{(3)^{2}}BC=

(3)

2

BC = \sqrt{9}BC=

9

\sqrt{9} = 3

9

=3

BC = 3 units

Take the vertiex C(7,5) and A(3,2).

CA = \sqrt{(3 - 7)^{2} +(2 - 5)^{2}}CA=

(3−7)

2

+(2−5)

2

CA = \sqrt{(-4)^{2} +(-3)^{2}}CA=

(−4)

2

+(−3)

2

CA = \sqrt{16 + 9}CA=

16+9

CA = \sqrt{25}CA=

25

\sqrt{25} = 5

25

=5

CA =5 units

Thus

Perimeter of a ΔABC = AB + BC + CA

= 4 + 3 + 5

= 12 units

Therefore the Perimeter of a ΔABC is 12 units .

Similar questions