Math, asked by kitabokiduniya12, 4 months ago

find the perimeter whose length and diagnol are 24cm and 25cm respectively​

Answers

Answered by ItzWhiteStorm
60

\large\red{\underline{\mathfrak{Question:}}}

\dashrightarrow Find the perimeter of rectangle whose length and diagonal are 24 cm and 25 cm respectively.

\large\red{\underline{\mathfrak{To\:Find:}}}

\longrightarrow Perimeter of triangle = ?

\large\red{\underline{\mathfrak{Given:}}}

\:  \:  \:  \:  \:  \:  \:  \:  \: :\implies \tt{Length \:  =  \: 24 \: cm}

\:  \:  \:  \:  \:  \:  \:  \:  \: :\implies \tt{Diagonal \:  =  \: 25 \: cm}

\large\red{\underline{\mathfrak{Solution:}}}

\longrightarrow Let the Breadth be b.

Applying Pythagoras Theorem of rectangle:

\sf{AC}^{2}  = AB^{2}  + BC^{2}

Let us consider that,

\sf{AC = 25 , AB = 24  \: and \:  BC = b}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf{(25)^2 = (24)^2 + (b)^2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf{625 = 576 + (b)^2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf{625 - 576 = (b)^2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf{49 = (b)^2}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf{\therefore\:b = 7\:cm}

\sf{Now,\: the \: perimete \: of \: rectangle} = 2(l + b)

Length = 24 cm and breadth = 7 cm

\:  \:  \:  \:  \:  \:  \:  :  \implies \tt{2(24 + 7)}

\:  \:  \:  \:  \:  \:  \:  :  \implies \tt{2(31)}

\:  \:  \:  \:  \:  \:  \:  :  \implies \tt{62\:cm}

Thus,The perimeter of rectangle is 62 cm.

Similar questions