Math, asked by papafairy143, 20 days ago

Find the period of the following function

 {4cos}^{4} ( \frac{x - \pi}{ {4\pi}^{2} }) - 2cos( \frac{x - \pi}{ {2\pi}^{2} })

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  4{cos}^{4}\bigg(\dfrac{x - \pi}{ {4\pi}^{2} } \bigg)  - 2cos\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)

can be further rewritten as

\rm \: f(x) =  \bigg[2{cos}^{2}\bigg(\dfrac{x - \pi}{ {4\pi}^{2} } \bigg)\bigg]^{2}   - 2cos\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)  \\

We know,

\boxed{\tt{  \:  \:  {2cos}^{2}x = 1 + cos2x \:  \: }} \\

So, using this, we get

\rm \: f(x) =  {\bigg[1 + cos2\bigg(\dfrac{x - \pi}{ {4\pi}^{2} } \bigg) \bigg]}^{2} - 2cos\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)  \\

\rm \: f(x) =  {\bigg[1 + cos\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg) \bigg]}^{2} - 2cos\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)  \\

\rm \: f(x) = 1 +  {cos}^{2}\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg) + cos\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg) - 2cos\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)  \\

\rm \: f(x) = 1 +  {cos}^{2}\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)\\

\rm \: f(x) = \dfrac{1}{2}\bigg[2 + 2{cos}^{2}\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)\bigg]\\

Again, using the result,

\boxed{\tt{  \:  \:  {2cos}^{2}x = 1 + cos2x \:  \: }} \\

we get

\rm \: f(x) = \dfrac{1}{2}\bigg(2 + 1 + cos2\bigg(\dfrac{x - \pi}{ {2\pi}^{2} } \bigg)  \bigg)

\rm \: f(x) = \dfrac{1}{2}\bigg(3 + cos\bigg(\dfrac{x - \pi}{ {\pi}^{2} } \bigg)  \bigg)  \\

can be further rewritten as

\rm \: f(x) = \dfrac{1}{2}\bigg(3 + cos\bigg(\dfrac{x}{ {\pi}^{2}} - \dfrac{\pi}{ {\pi}^{2} }  \bigg)  \bigg)  \\

\rm \: f(x) = \dfrac{1}{2}\bigg(3 + cos\bigg(\dfrac{x}{ {\pi}^{2}} - \dfrac{1}{\pi}   \bigg)  \bigg)  \\

We know,

\boxed{\sf{ Period\:of\:cos(ax + b) = \:  \frac{2\pi}{a} }} \\

So, using this result, we have

\rm \: Period\:of\:f(x) =\dfrac{2\pi}{\dfrac{1}{ {\pi}^{2} } }  \\

\rm\implies \: \: \boxed{\tt{  \: \rm \: Period\:of\:f(x) = {2\pi}^{3} \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Period \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx, \: cosx & \sf 2\pi \\ \\ \sf tanx, \: cotx & \sf \pi \\ \\ \sf  |sinx|, \:  |cosx|, \:  |tanx|  & \sf \pi\\ \\ \sf  {sin}^{n}x, \:  {cos}^{n}x & \sf \pi \: if \: n \: is \: even\\ \\ \sf {sin}^{n}x, \:  {cos}^{n}x & \sf 2\pi \: if \: n \: is \: odd\\ \\ \sf sin(ax + b), \: cos(ax + b) & \sf \dfrac{2\pi}{a}  \end{array}} \\ \end{gathered} \\

Similar questions