find the perpendicular distance between the (3, 4) and the lines 3x + 4y =5
points
Answers
• The perpendicular distance between the point (3,4) and the line 3x+4y=5 is 4 units
• The length perpendicular from a point
to a line ax+by+c=0 is
We have to Find the perpendicular distance between the point (3,4) and the line 3x+4y=5
Let the perpendicular distance be P , and point (3,4) and line 3x+4y-5=0
\huge\underline\blue{SolutioN:-}
SolutioN:−
• The perpendicular distance between the point (3,4) and the line 3x+4y=5 is 4 units
\underline\purple{Theory:}
Theory:
• The length perpendicular from a point \sf\:(x_1,y_1)(x
1
,y
1
)
to a line ax+by+c=0 is
\rm=|\dfrac{ax_1+by_1+c}{\sqrt{a^2+b^2}}=∣
a
2
+b
2
ax
1
+by
1
+c
\underline{\pink{Step \: by \: step \: explanation:}}
Stepbystepexplanation:
We have to Find the perpendicular distance between the point (3,4) and the line 3x+4y=5
Let the perpendicular distance be P , and point (3,4) and line 3x+4y-5=0
\green{Then ,}Then,
\underline{\red{Perpendicular \: distance}}
Perpendiculardistance
\sf\:P=|\dfrac{3(3)+4(4)-5}{\sqrt{3^2+4^2}}P=∣
3
2
+4
2
3(3)+4(4)−5
\sf\implies\:P=|\dfrac{9+16-5}{\sqrt{9+16}}⟹P=∣
9+16
9+16−5
\sf\implies\:P=|\dfrac{9+16-5}{\sqrt{9+16}}⟹P=∣
9+16
9+16−5
\sf\implies\:P=|\dfrac{25-5}{\sqrt{25}}⟹P=∣
25
25−5
\sf\implies\:P=|\dfrac{20}{5}⟹P=∣
5
20
\sf\implies\:P=4⟹P=4