Math, asked by zakshiva, 11 months ago

Find the perpendicular distance of the point (1,2) from the line 3x+4y-13=0

Answers

Answered by BrainlyPopularman
7

GIVEN :–

• A line 3x + 4y - 13 = 0 and a point (1,2).

TO FIND :–

• Perpendicular distance of the point (1,2) from the line 3x + 4y - 13 = 0 is = ?

SOLUTION :–

• We know that Perpendicular distance of the point (m , n) from the line ax + by + c = 0 is –

 \\  \:  \:  \:  { \huge{\star}} \:  \large  \: { \red{ \boxed{ \bold{Distance =  \dfrac{ |a(m) + b(n) + c| }{ \sqrt{ {a}^{2} +  {b}^{2}  } }  }}}} \\

• Here –

 \\  \:  \:  \:   \:  \:  \:  \: { \huge{.}}  \: { \bold{ \:  \:  \: m = 1}} \\

 \\  \:  \:  \:   \:  \:  \:  \: { \huge{.}}  \: { \bold{ \:  \:  \: n = 2}} \\

 \\  \:  \:  \:   \:  \:  \:  \: { \huge{.}}  \: { \bold{ \:  \:  \: a = 3}} \\

 \\  \:  \:  \:   \:  \:  \:  \: { \huge{.}}  \: { \bold{ \:  \:  \: b = 4}} \\

 \\  \:  \:  \:   \:  \:  \:  \: { \huge{.}}  \: { \bold{ \:  \:  \: c =  - 13}} \\

• Now put the values –

 \\  \implies  { \bold{Distance =  \dfrac{ |3(1) + 4(2)  - 13| }{ \sqrt{ {3}^{2} +  {4}^{2}  } }  }} \\

 \\  \implies  { \bold{Distance =  \dfrac{ |3 +8  - 13| }{ \sqrt{ 9 +  16 } }  }} \\

 \\  \implies  { \bold{Distance =  \dfrac{ |11 - 13| }{ \sqrt{ 9 +  16 } }  }} \\

 \\  \implies  { \bold{Distance =  \dfrac{ | - 2| }{ \sqrt{ 25 } }  }} \\

 \\  \implies  \large { \green{ \boxed{ \bold{Distance =  \dfrac{  2 }{ 5 } } }}} \\

Similar questions