Math, asked by kspatil7413, 1 year ago

Find the point of intersection of the line r=2a+b+t(b-c) and the plane r=a+x(b=c)=y(a+2b-c)where a,b and c are non coplanar vectors

Answers

Answered by Agastya0606
39

Given: the line r = 2a+b+t(b-c) and the plane r = a+x(b+c)+y(a+2b-c)

To find: The point of intersection.

Solution:

  • So we have given a line:

                  r = 2a + b + t ( b - c )

  • It can be written as:

                  r = 2a + ( 1 + t)b + (-t)c             .................(i)

  • We have also given a plane:

                  r = a + x ( b + c ) + y ( a + 2b - c )

  • It can be written as:

                  r = (1 + y)a + (x + 2y)b + (x - y)c    .................(ii)

  • So from (i) and (ii), we have:

                  1 + y = 2

                  y = 1

                  x + 2y = 1 + t

                  x + 2 = 1 + t

                  x - t + 1 = 0 .................(iii)

                  x - y = -t

                  x - 1 = -t

                  x + t - 1 = 0  ...................(iv)

  • So from (iii) and (iv), we get:

                  x = 0

  • Putting it in iii, we get:

                  t = 1

  • Now from (i), we have:

                  r = 2a + b + ( b - c ) = 2a + 2b - c

Answer:

         So the point of intersection is r = 2a + 2b - c.

Answered by harinidevi1812
4

Answer:

hope it helps you

Step-by-step explanation:

please mark me brainliest

Attachments:
Similar questions