Math, asked by vgnaneshwari126, 3 months ago

find the point of intersection of the lines AB and CD where A=(7, -6, 1) B=(17, -18, -3)and C=(1, 4 -5) and D=(3, -4, 11)​

Answers

Answered by Teluguwala
3

Given,

  • A = (7, -6, 1)
  • B = (17, -18, -3)
  • C = (1, 4 -5)
  • D = (3, -4, 11)

Let,

The point 'p' divides AB in the ratio λ:1 internally

  • A = (7, -6, 1)
  • B = (17, -18, -3)

 \qquad \displaystyle \sf P =  \bigg( \frac{17 λ+ 7}{λ + 1} , \:  \frac{ - 18λ - 6}{λ + 1}  , \:  \frac{ - 3λ + 1}{λ + 1}  \bigg) \:  -  -  - 1

and the point 'p' divides CD in the ratio μ:1 internally

  • C = (1, 4 -5)
  • D = (3, -4, 11)

 \qquad \displaystyle \sf P^{'}  =  \bigg( \frac{3μ + 1}{ μ+ 1} , \:  \frac{ - 4μ + 6}{μ + 1}  , \:  \frac{ 11μ + 5}{μ+ 1}  \bigg) \:  -  -  - 2

Equating 1 and 2,

 \qquad \displaystyle \sf  \frac{17λ + 7}{λ + 1}  =  \frac{3μ + 1}{μ + 1}

 \qquad \displaystyle \sf 17 λμ+ 7μ + 17λ + 7=  3λμ + 3μ+ λ + 1

 \qquad \displaystyle \sf 14 λμ+ 4μ + 16λ + 6=  0 \:  -  -  - 3

and

 \qquad \displaystyle \sf  \frac{ - 18λ - 6}{λ + 1}  =  \frac{ - 4μ + 4}{μ + 1}

\qquad \displaystyle \sf   (- 18λ - 6)(μ + 1)=  (λ + 1)( - 4μ  + 4)

\qquad \displaystyle \sf   - 18μλ - 6μ - 18λ - 6 = - 4μλ  + 4λ -4μ + 4

\qquad \displaystyle \sf   - 14μλ -2μ- 22λ - 10 = 0

\qquad \displaystyle \bf   - 7μλ -μ- 11λ - 5= 0

Hence,

The point of intersection is -7μλ-μ-11λ-5=0

 \:

Similar questions