Math, asked by satye45, 2 months ago

Find the point of intersection of the lines AB and CD where A(7, -6, 1), B(17, -18, -3), C(1, 4, -5) and D = (3, 4, 11).​

Answers

Answered by shadowsabers03
6

The vector form of equation of the line AB is,

\longrightarrow\vec{r_1}=\left<7,\ -6,\ 1\right>+\lambda_1\left<7-17,\ (-6)-(-18),\ 1-(-3)\right>

\longrightarrow\vec{r_1}=\left<7,\ -6,\ 1\right>+\lambda_1\left<-10,\ 12,\ 4\right>

\longrightarrow\vec{r_1}=\left<7-10\lambda_1,\ -6+12\lambda_1,\ 1+4\lambda_1\right>

and that of line CD is,

\longrightarrow\vec{r_2}=\left<1,\ 4,\ -5\right>+\lambda_2\left<3-1,\ 4-4,\ 11-(-5)\right>

\longrightarrow\vec{r_2}=\left<1,\ 4,\ -5\right>+\lambda_2\left<2,\ 0,\ 16\right>

\longrightarrow\vec{r_2}=\left<1+2\lambda_2,\ 4,\ -5+16\lambda_2\right>

To get the position vector of intersection point, let,

\longrightarrow\vec{r_1}=\vec{r_2}

\longrightarrow\left<7-10\lambda_1,\ -6+12\lambda_1,\ 1+4\lambda_1\right>=\left<1+2\lambda_2,\ 4,\ -5+16\lambda_2\right>

Equating corresponding 'y' components,

\longrightarrow-6+12\lambda_1=4

\longrightarrow\lambda_1=\dfrac{5}{6}

Equating corresponding 'x' components and putting value of \lambda_1,

\longrightarrow7-10\lambda_1=1+2\lambda_2

\longrightarrow7-10\cdot\dfrac{5}{6}=1+2\lambda_2

\longrightarrow7-\dfrac{25}{3}=1+2\lambda_2

\longrightarrow\lambda_2=-\dfrac{7}{6}

But on equating corresponding 'z' components and putting values of \lambda_1 and \lambda_2,

\longrightarrow1+4\lambda_1=-5+16\lambda_2

\longrightarrow1+4\cdot\dfrac{5}{6}=-5+16\cdot-\dfrac{7}{6}

\longrightarrow\dfrac{13}{3}=-\dfrac{71}{3}

This contradiction implies the lines AB and CD do not intersect each other.

Hence there is no point of intersection.

Similar questions