find the point of minima of y=x3-12x-5
Answers
Answered by
1
Answer:
f(x)=−x2+12x2−5
f′(x)=−3x2+24x=0
x2−8x=0
x(x−8)=0 ⇒ x=0 or x=8
f′(x)=−6x+24
f11(x)=24>0f11(8)=−48+24=−24<0
⇒ x=0 is minimum x=8 is maximum
Similar questions