find the point on the curve at which the tangent to the curve y=3x^2-2x+1 is parallel to x Axis
Answers
Answer:
Let (x,y) be the required point.
Let (x,y) be the required point.The slop of line y=3x+4 is 3
Let (x,y) be the required point.The slop of line y=3x+4 is 3Since, the point lie
2
2 −x+1
2 −x+1Differentiate w.r.t x,
2 −x+1Differentiate w.r.t x,⇒
2 −x+1Differentiate w.r.t x,⇒ dx
2 −x+1Differentiate w.r.t x,⇒ dxdy
2 −x+1Differentiate w.r.t x,⇒ dxdy
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent =
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dx
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1And
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1And⇒ y=2x
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1And⇒ y=2x 2
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1And⇒ y=2x 2 −x+1=2(1)
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1And⇒ y=2x 2 −x+1=2(1) 2
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1And⇒ y=2x 2 −x+1=2(1) 2 −1+1=2
2 −x+1Differentiate w.r.t x,⇒ dxdy =4x−1Now,Slope of the tangent = dxdy =4x−1Slop of the tangent = Slop of the given lien [ Given ]∴ 4x−1=3⇒ 4x=4⇒ x=1And⇒ y=2x 2 −x+1=2(1) 2 −1+1=2∴ Required point is (1,2)