Math, asked by salonisharmasharma58, 9 months ago

Find the point on the curve y= Vx – 3 where
the tangent is perpendicular to the line
6x + 3y - 5 = 0.​

Answers

Answered by amansharma264
26

ANSWER.

=> the point on the curve are = ( 4,1)

Step - by - Step - Explanation.

 \sf \to \: the \: point \: on \: the \: curve \:  =  y =  \sqrt{x - 3} \\  \\  \sf \to \: tangent \: is \: perpendicular \: to \: the \: line \:  = 6x + 3y - 5 = 0

 \sf \to \: equation \:  = 6x + 3y - 5 = 0 \\  \\  \sf \to \: curve \:  = y = mx + c \\  \\  \sf \to \: 3y = 5 - 6x \\  \\  \sf \to \: y \:  =  \dfrac{5}{3}  -  \dfrac{6x}{3}  \\  \\  \sf \to \: y \:  =  - \dfrac{6x}{3}  +  \dfrac{5}{3}  \\  \\  \sf \to \: y \:  =  - 2 \\  \\  \sf \to \: as \: we \: know \: that \\  \\  \sf \to \:  m_{1} \times  m_{2} =  - 1 \\  \\  \sf \to \: m_{1} \times ( - 2) =  - 1 \\  \\  \sf \to \:  m_{1} =  \dfrac{1}{2}  = slope

 \sf \to \: point \: on \: curve \:  = y =  \sqrt{x - 3}  \\  \\  \sf \to \: differentiate \:  \: w.r.t \:  \: y \\  \\  \sf \to \:  \dfrac{dy}{dx} =  \dfrac{1}{2 \sqrt{x - 3} } \\  \\  \sf \to \: as \: we \: know \: that \\  \\  \sf \to \: differentiation \: of \:  \sqrt{x} =  \dfrac{1}{2 \sqrt{x} }  \\  \\  \sf \to   \dfrac{1}{2 \sqrt{x - 3} }   =  \frac{1}{2}  \\  \\  \sf \to \: 2 \sqrt{x - 3}  = 2 \\  \\  \sf \to \: squaring \: on \: both \: sides \: we \: get \\  \\  \sf \to \: 4(x - 3) = 4 \\  \\  \sf \to \: 4x - 12 = 4 \\  \\  \sf \to \: 4x = 16 \\  \\  \sf \to \:  \: x \:  = 4 \\  \\  \sf \to \: put \: the \: value \: of \: x = 4 \:  in \: equation \: \\  \\  \sf \to \: y =  \sqrt{4 - 3}  \\  \\  \sf \to \: y \:  = 1 \\  \\  \sf \to \:  \green{{ \underline{points \: on \: the \: curve \:  = (4 \:, 1)}}}


Anonymous: Great ( ╹▽╹ )
Answered by Anonymous
24

\bf\huge\underline\red{Answer:-}

\bf\underline\purple{Given:-}

  • Curve y =√x-3

  • line 6x+3y-5=0

\bf\underline\red{Solution:-}

3y = 5-6x

y=5-6x/3 =-6x/3+5/3

m2 =-6/3=-2

m1×(-2)=-1

m1=1/2

y=√x-3

dy/dx=1/2√x-3

=>1/2√x-3=1/2

=>√x-3=1

=>x-3=1

=>x=4

y=√4-3=1

Point on the curve is (4,1)

Similar questions