Math, asked by ayandipganguly4444, 6 months ago

Find the point on the parabola y^2=8x at which the radius of curvature is 125/16

Answers

Answered by bhardwajrashmi585
29

Answer:

Step-by-step explanation:

We know, rho, radius of curvature =[1+(dy/dx) ^2]^3/2/d^2y/dx^2.......(A)

We are given, radius of curvature=215/16......(a)

and the equation of curve, y^2=8x..... (1)

Differentiating equation... (1) w. r. t x both sides we get,

dy/dx=4/y...(b)

Again differentiating above equation w. r. t x both sides we get,

d^2y/dx^2= -16/y^3...(c)

Using equations (a), (b), (c)... in (A) we get,

125/16=[1+16/y^2]^3/2/-16/y^3

125/16=[y^2+16]^3/2/-16

125/16*16=[y^2+16]^3/2

(125)^2/3=

Answered by priyarksynergy
10

Given the equation of a parabola y^2=8x, Find a point where the radius of curvature is \frac{125}{16}.

Explanation:

  • The radius of curvature 'R' of any twice differentiable curve y=f(x) at any point (x,y) is given by,    R=\frac{(1+y'^2)^{\frac{3}{2} }}{|y''|}  
  • Here y' and y'' are the first and second derivatives of the curve at the given point on it.
  • Given is the curve y^2=8x, let the required point be (x,y).
  • Hence, the required derivatives of this curve at the point (x,y) are,
  •         2yy'=8\ \ \  \ \ \ \ \ \  ->y'=\frac{4}{y} \\y''=\frac{-4}{y^2}(y')  \ \ \ \   ->y''=\frac{-16}{y^3}      
  • Substituting these values in the formula for the radius of curvature we get,  
  •                         \frac{(1+y'^2)^{\frac{3}{2} }}{|y''|}=\frac{125}{16}\\ ->\frac{(1+(\frac{4}{y})^2)^{\frac{3}{2} }}{|\frac{-16}{y^3}|}=\frac{125}{16} \\->\frac{(y^2+16)^{\frac{3}{2} }}{16}=\frac{125}{16} \\->(y^2+16)^{\frac{3}{2} }= 125=25^{\frac{3}{2} }\\->y^2+16=25\\->y=\pm3  \\->x=\frac{y^2}{8}\\\\ ->y=\pm3, \ x=\frac{9}{8}    
  • Hence, there are two possible points on the parabola for the given radius of curvature (3,\frac{9}{8} ),\ (-3,\frac{9}{8}).
Similar questions