Math, asked by wwwdivyadj, 2 months ago

find the point on the parabola y²=2x os the closest point to the point 1, 4​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given equation of Parabola is

\rm :\longmapsto\: {y}^{2} = 2x  -  -  - (1)

Let the point P (x, y) be the point on the parabola which is closest to the point Q (1, 4).

So, Distance between P and Q is

\rm :\longmapsto\:PQ =  \sqrt{ {(x - 1)}^{2} +  {(y - 4)}^{2}  }

\rm :\longmapsto\:PQ^{2}  =   { \bigg(\dfrac{ {y}^{2} }{2}  - 1 \bigg)}^{2} +  {(y - 4)}^{2}

\rm :\longmapsto\:Let \: f(y) =   { \bigg(\dfrac{ {y}^{2} }{2}  - 1 \bigg)}^{2} +  {(y - 4)}^{2}

\rm \:  \:  =  \: \dfrac{ {y}^{4} }{4} + 1 -  {y}^{2} +  {y}^{2} + 16 - 8y

\rm \:  \:  =  \: \dfrac{ {y}^{4} }{4} + 17 - 8y

\rm \:  \: f(y) =  \: \dfrac{ {y}^{4} }{4} + 17 - 8y

Differentiate both sides w. r. t. y, we get

\rm :\longmapsto\:f'(y) = \dfrac{4 {y}^{3} }{4}  - 8

\rm :\longmapsto\:f'(y) = {y}^{3} - 8 -  -  -  -  - (2)

For maxima or minima,

\rm :\longmapsto\:f'(y) =0

\rm :\longmapsto\: {y}^{3}  - 8 = 0

\rm :\longmapsto\: {y}^{3}   =  8

\bf\implies \:y = 2 -   -  - - (3)

On differentiating both sides w. r. t. y equation (2), we get

\rm :\longmapsto\:f''(y) = {3y}^{2}

\rm :\longmapsto\:f''(2) = {3} \times 2^{2}

\rm :\longmapsto\:f''(2) = {3} \times 4

\rm :\longmapsto\:f''(2) = 12

\bf\implies \:f''(2) > 0

Hence,

\rm :\longmapsto\:f(y) \: is \: minimum \: when \: y \:  =  \: 2

\bf :\longmapsto\:PQ \: is \: minimum \: when \: y \:  =  \: 2

On substituting the value of y = 2, in equation (1), we get

\rm :\longmapsto\: {2}^{2}  = 2x

\rm :\longmapsto\: 4  = 2x

\bf\implies \:x = 2

\bf\implies \:P(2,2) \: is \: point \: on \:  {y}^{2} = 2x \: closest \: to \: (1,4)

Additional Information :-

HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

  • Differentiate the given function, f(x)

  • let f'(x) = 0 and find critical points say a.

  • Find the second derivative of f(x), say f''(x).

  • Apply these critical points in the second derivative.

  • The function f (x) is maximum at x = a when f''(a) < 0.

  • The function f (x) is minimum at x = a when f''(a) > 0.

Similar questions