Math, asked by khanarshadatique31, 5 months ago

Find the point on the X-asis which is equidistant from A-3, 4) and 1.-4)​

Answers

Answered by Anonymous
2

Given :

  • A(-3, 4)
  • B(1, -4)

To Find :

The point on the x-axis which is equidistant.

Solution :

Analysis :

Here the distance formula is used. First we have to find the distance from point A and then from B. After squaring both the distance we can get the point.

Required Formula :

\\ :\boxed{\bf Distance\ Formula=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}

where,

  • (x₁, y₁) = Coordinates of point A
  • (x₂, y₂) = Coordinates of point B

Explanation :

Let us assume that the point is P(x, 0) because the point is on x-axis.

  • A(-3, 4)
  • B(1, -4)

First PA :

  • P(x, 0)
  • A(-3, 4)

Using distance formula,

\\ :\implies\sf Distance\ Formula=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

where,

  • x₁ = x
  • x₂ = -3
  • y₁ = 0
  • y₂ = 4

Using the required formula and substituting the required values,

\\ :\implies\sf PA=\sqrt{(-3-x)^2+(4-0)^2}

\\ :\implies\sf PA=\sqrt{(-3-x)^2+(4)^2}

\\ :\implies\sf PA=\sqrt{(-3-x)^2+16}\qquad\Bigg\lgroup\bf eq.(i)\Bigg\rgroup

Second PB :

  • P(x, 0)
  • B(1, -4)

Using distance formula,

\\ :\implies\sf Distance\ Formula=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

where,

  • x₁ = x
  • x₂ = 1
  • y₁ = 0
  • y₂ = -4

Using the required formula and substituting the required values,

\\ :\implies\sf PB=\sqrt{(1-x)^2+(-4-0)^2}

\\ :\implies\sf PB=\sqrt{(1-x)^2+(-4)^2}

\\ :\implies\sf PB=\sqrt{(1-x)^2+16}\qquad\Bigg\lgroup\bf eq.(ii)\Bigg\rgroup

Now by squaring :

From eq.(i) and eq.(ii),

PA = PB,

\\ :\implies\sf\sqrt{(-3-x)^2+16}=\sqrt{(1-x)^2+16}

Now, PA² = PB²,

\\ :\implies\sf(-3-x)^2+16=(1-x)^2+16

Using the identity (a - b)² = a² - 2ab + b² in both LHS and RHS,

\\ :\implies\sf(-3)^2-2.(-3).x+x^2+16=(1)^2-2.1.x+x^2+16

\\ :\implies\sf9-(-6x)+x^2+16=1-2x+x^2+16

Cancelling 16 from both sides,

\\ :\implies\sf9-(-6x)+x^2\ \cancel{+16}=1-2x+x^2\ \cancel{+16}

\\ :\implies\sf9+6x+x^2=1-2x+x^2

Cancelling x² from both sides,

\\ :\implies\sf9+6x\ \cancel{+x^2}=1-2x\ \cancel{+x^2}

\\ :\implies\sf9+6x=1-2x

Transposing -2x to LHS and 9 to RHS,

\\ :\implies\sf6x+2x=1-9

After evaluation,

\\ :\implies\sf8x=-8

\\ :\implies\sf x=\dfrac{-8}{8}

\\ :\implies\sf x=\cancel{\dfrac{-8}{8}}

\\ \therefore\boxed{\bf x=-1.}

The point P(x, 0) = P(-1, 0)

The point is P(-1, 0).

Similar questions