Math, asked by rohit8184, 11 months ago

Find the point on the y-axis which is equidistant from the points A(6,5) and B(- 4, 3).

Answers

Answered by Anonymous
34

Answer:

We know that a point on the y-axis is of the form (0,y).So,let the point p(0,y) be equidistant from A and B .Then

 =  > (6 - 0)^{2}  +( 5 - y)^{2}  = ( - 4 - 0)^{2}  + ( {3 - y)}^{2}  \\  \\   =  > 36 + 25 +  {y}^{2}  - 10y = 16 + 9   +  {y}^{2}  - 6y \\  \\  =  > 4y = 36 \\  \\  =  > y =9

so the required point is (0,9)

Let us check our solution.....

ap =  \sqrt{ {(6 - 0)}^{2}  +  {(5 - 9)}^{2} }   \\  \\   \:  \:  \:  =  \sqrt{36 + 16}  \\  \\   \:  \: =  \sqrt{52}

bp =  \sqrt{  {( - 4 - 0)}^{2}  + (3 - 9)^{2} }  \\  \\  \:  \:  \:  \:  =  \sqrt{16 + 32}  \\  \\  \:  \:  \:  =  \sqrt{52}

we see that (0,9) is the intersection of the y- axis and the perpendicular bisector of ab.

Answered by FIREBIRD
16

Step-by-step explanation:

We Have :-

point \: a \: (6,5) \\  \\  \\ point \: b \: ( - 4,3)

To Find :-

Find \:  the  \: point  \: on  \: the  \: y-axis \:  which \:  is \:  equidistant \:  from \:  the \:  points \:  A(6,5) \:  and \:  B(- 4, 3).

Method Used :-

distance \: formula

Solution :-

we \: know \: that \: any \: point \: on \: y - axis \: is \: of \: type \: (0, y) \\  \\  \\ let \: this \: point \: be \: c(0, y) \\  \\  \\ then \: distance \\  \\  \\ ac = bc \\  \\  \\ using \: distance \: formula \\  \\  \\  \sqrt{ac}  =  \sqrt{bc}  \\  \\ squaring \: both \: sides \\  \\  \\ ac = bc \\  \\  \\ (0 - 6)^{2}  + (y - 5) ^{2}  = (0 + 4)^{2} (y - 3)^{2}  \\  \\  \\ 36 + (y^{2}  + 25 - 10y) = 16 + (y^{2}  + 9 - 6y) \\  \\  \\ 36 + y^{2}  + 25 - 10y= 16 + y^{2}  + 9 - 6y \\  \\  \\ 61 + y^{2}  - 10y = 25 + y^{2}  - 6y \\  \\  \\ 61  - 10y = 25   - 6y  \\  \\  \\ 61 - 25 =  - 6y + 10y \\  \\  \\ 36 = 4y \\  \\  \\ y =  \dfrac{36}{4}  \\  \\  \\ y = 9 \\  \\  \\ so \: the \: point \: is \: (0,9)

Similar questions