Math, asked by Prashantbandal, 1 year ago

Find the point on X-axis which is equidistant from (2,-5),and (-2,9)

Answers

Answered by Rajusingh45
62
Hello friend

____________________________

Let the point P(2,-5), Q(-2,9) and let be t the point on x-axis which will be R(t,0)

If R is an equidistant from P and Q,then we it can be written as

RP = RQ

So let's define it

By using the formula of equidistant

RP =
 \sqrt{(x2 - x1) {}^{2}  + (y2 - y1) {}^{2} }
Here,

X2 = 2 Y2= -5

X1 = t Y1= 0

By putting the values we get,

RP =
 \sqrt{(2 - t) {}^{2} + ( - 5 - 0) {}^{2}   }  =  \sqrt{(2 - t) {}^{2} + ( - 5) {}^{2}  }

RP =
 \sqrt{(2) {}^{2}  + (t) {}^{2}   - 2(2)(t) + 25}  \\  \\  =  \sqrt{4 + t { }^{2} - 4t + 25  }  \\  \\  =  \sqrt{t {}^{2}  - 4t + 29}

Similarly,we will prove another one,

RQ =
 \sqrt{(x2 - x1) {}^{2}  + (y2 - y1) {}^{2} }
Here,

X2 = -2 Y2 = 9

X1 = t Y1 = 0

So,by putting the given values we get,

RQ =
 \sqrt{( - 2 - t) {}^{2}  + (9 - 0) {}^{2} }  \\  \\  =  \sqrt{( - 2) {}^{2} + (t) {}^{2} + 2(2)(t) + (9) {}^{2}   }  \\  \\  =  \sqrt{4 + t {}^{2}  + 4t +  81}  \\  \\  =  \sqrt{t {}^{2}  + 4t + 85}

Now,we got the value of RP and RQ

We know that,

RP = RQ

So,let put the calculated values.

 \sqrt{t {}^{2}  - 4t + 29}  =  \sqrt{t {}^{2}  + 4t + 85}  \\  \\  = ( \sqrt{t {}^{2}  - 4t + 29  } ) {}^{2}  = ( \sqrt{t {}^{2}  + 4t +  85} ) {}^{2}  \\  \\  = t {}^{2}  - 4t + 29 = t {}^{2}  + 4t + 85 \\  \\   substituting \: the \: vlue \: of \: right \: hand \: side \: to \: the \: left \: hand \: side \\  \\  = t {}^{2}  - 4t + 29 - t {}^{2}  - 4t - 85 = 0 \\  \\  =  - 8t - 56 = 0 \\  \\  =  - 8t = 56 \\  \\  t  =  \frac{56}{ - 8}  \\  \\ t =  - 7

Therefore, the co-ordinat point on x-axis is (-7,0)

Thanks...

:)

Prashantbandal: thanks bro
Prashantbandal: Nice one
Rajusingh45: it's my pleasure::D
AnviGottlieb: Well done :D
Rajusingh45: Thanks Anvi
Similar questions