Math, asked by thank5860, 9 months ago

Find the point on x - axis which is equidistant from the following pair of points:
(3, 2) and (- 5, - 2)

Answers

Answered by Anonymous
0

\bold{\huge{\fbox{\color{Maroon}{♡Hello♡}}}}

Answer :

(3, 7), (6, 5) and (15, –1)

=>Let the points be A (15, –1), B (6, 5) and C (3, 7)

Distance of AB...

⇒ AB = √ (6 – 15)2 + (5 – (–1))2

⇒ AB = √ (–9)2 + (6)2

⇒ AB = √ (81 + 36)

⇒ AB = √ 117 = √ 3 × 3 × 13

⇒ AB = 3√13

Distance of BC

⇒ BC = √ (3 – 6)2 + (7 – 5)2

⇒ BC= √ (3)2 + (2)2

⇒ BC = √ (9 + 4)

⇒ BC= √ 13

Distance of AC

⇒ AC = √ (3 – 15)2 + (7 – (–1))2

⇒ AC = √ (3 – 15)2 + (7 + 1)2

⇒ AC= √ (–12)2 + (8)2

⇒ AC = √ (144 + 64)

⇒ AC= √ 208 = √ 4 × 4 × 13

⇒ AC = 4√13

i.e. AB + BC = AC

⇒ 3√13 + √13 = 4√13

\bold{\small{\fbox{\color{Black}{∴ A, B     and C are collinear}}}}

\bold{\huge{\fbox{\color{Pink}{♡Thanks♡}}}}

Answered by Anonymous
6

Answer:

Answer :

(3, 7), (6, 5) and (15, –1)

=>Let the points be A (15, –1), B (6, 5) and C (3, 7)

Distance of AB...

⇒ AB = √ (6 – 15)2 + (5 – (–1))2

⇒ AB = √ (–9)2 + (6)2

⇒ AB = √ (81 + 36)

⇒ AB = √ 117 = √ 3 × 3 × 13

⇒ AB = 3√13

Distance of BC

⇒ BC = √ (3 – 6)2 + (7 – 5)2

⇒ BC= √ (3)2 + (2)2

⇒ BC = √ (9 + 4)

⇒ BC= √ 13

Distance of AC

⇒ AC = √ (3 – 15)2 + (7 – (–1))2

⇒ AC = √ (3 – 15)2 + (7 + 1)2

⇒ AC= √ (–12)2 + (8)2

⇒ AC = √ (144 + 64)

⇒ AC= √ 208 = √ 4 × 4 × 13

⇒ AC = 4√13

i.e. AB + BC = AC

⇒ 3√13 + √13 = 4√13

\bold{\small{\fbox{\color{Black}{∴ A, B and C are collinear}}}}

∴A,BandCarecollinear

\bold{\huge{\fbox{\color{Pink}{♡Thanks♡}}}}

♡Thanks♡

Similar questions