Math, asked by daive, 7 months ago

Find the point on X-axis which is equidistant from the points (2,-2) and (-4,2)
pls give step by step explanation​

Answers

Answered by Anonymous
100

To find:-

The point on X-axis which is equidistant from the points (2,-2) and (-4,2).

Answer:-

We know that, Point on X-Axis will be in the form of (0,x). So, let's consider this point as P(0,x).

Considering,

For point A,

\sf{x_{1} = 0}

\sf{y_{1} = x}

\sf{x_{2} = 2}

\sf{y_{2} = -2}

For point B,

\sf{x_{1} = 0}

\sf{y_{1} = x}

\sf{x_{2} = -4}

\sf{y_{2} = 2}

\\

\\

\sf\red {Substitution:}

Using distance formula,

\bf \sqrt{({x_{2} - x_{1} })^{2}  + ( {y_{2} - y_{1}})^{2} }

\\

\sf {(2 - 0)}^{2} +  {( - 2 - x})^{2}  =  {( - 4 - 0 ) }^{2}  +  {(2 - x)}^{2} [∵Square root on both sides gets cancelled]

\sf {(2)}^{2} +  ({ - 2 - x})^{2}   =  {( - 4)}^{2}  +  {(2 - x)}^{2}

\sf{4 + 4 +  {x}^{2}  + 4x = 16 + 4 +  {x}^{2}  - 4x}

\sf{8 +  {x}^{2}  + 4x = 20 +  {x}^{2}  - 4x}

\sf{8 - 20 =  - 4x - 4x}

\sf{ - 12 =  - 8x}

\sf \frac{ - 12}{ - 8}  = x

\huge\pink\bigstar \huge\bf\red {x = \frac{3}{2}}

∴P(0,x) = P(0,\sf\frac {3}{2})

\\

\\

\sf\red{Verification:}

\sf {(2 - 0)}^{2}  +  {( - 2 -  \frac{3}{2} })^{2}  =  {( - 4 - 0)}^{2}  +  {(2 -  \frac{3}{2} )}^{2}

\sf {2}^{2} +  {( - 4 -  \frac{3}{2} )}^{2}   =  {( - 4)}^{2}  +  {(4 -  \frac{3}{2} )}^{2}

\sf{4 +  \frac{49}{4}  = 16 +  \frac{1}{4}}

\sf \frac{16 + 49}{4}  =  \frac{64 + 1}{4}

\red\bigstar \bf\pink {\frac{65}{4}  =  \frac{65}{4}}

\tt\large{∴LHS = RHS}

\sf {Proved✔}

\\

So,

Fomulae used are,

\sf{(x+y)}^{2} = x^{2}+y^{2}+2xy

\sf{(x-y)}^{2} = x^{2}+y^{2}-2xy

\sf \sqrt{({x_{2} - x_{1} })^{2}  + ( {y_{2} - y_{1}})^{2} }

Answered by pulakmath007
3

SOLUTION

TO DETERMINE

The point on X-axis which is equidistant from the points (2,-2) and ( - 4,2)

EVALUATION

The required point lies on x axis

Let the coordinates of the point is (h, 0)

Now by the given condition

Distance between (h, 0) & (2, - 2) = Distance between (h, 0) & ( - 4, 2)

\displaystyle \sf{ \implies  \sqrt{ {(h - 2)}^{2}  +  {(0 + 2)}^{2} } =  \sqrt{ {(h + 4)}^{2}  +  {(0 - 2)}^{2} }  }

\displaystyle \sf{ \implies  \sqrt{ {(h - 2)}^{2}  + 4 } =  \sqrt{ {(h + 4)}^{2}  +  4}  }

\displaystyle \sf{ \implies {(h - 2)}^{2}  + 4 =   {(h + 4)}^{2}  +  4}

\displaystyle \sf{ \implies {(h - 2)}^{2}      = {(h + 4)}^{2}  }

\displaystyle \sf{ \implies  {h}^{2} - 4h + 4 =  {h}^{2}   + 8h + 16}

\displaystyle \sf{ \implies   - 12h=  12}

\displaystyle \sf{ \implies   h=  - 1}

Hence the required coordinate of the point is ( - 1 , 0 )

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. locate the following points on the cartesian plane(aEr) (0,a),(a,0),(-a, 0),(0,-a)...

https://brainly.in/question/26822338

2. Distance of a point A(-2,0) from x-axis is _______ units.

https://brainly.in/question/28760447

Similar questions