Math, asked by cleyondsouza16, 3 months ago

Find the point on x-axis which is equidistant from the points (2,-2) and (-4,2)

Answers

Answered by Aryan0123
23

Let the given points be

  • A (2, -2)
  • B (-4, 2)

 \:

The point which is equidistant from points A and B is on x axis. So let the required point be P (x, 0)

 \:

Now, We know that

Point P is equidistant from points A and B

 \:

So,

AP = PB

Applying distance formula,

AP =  \sqrt{(x - 2) {}^{2}  + (0 - ( - 2)) {}^{2} }  \\  \\

 \leadsto \:  \sf{AP =  \sqrt{x {}^{2}  + 4 - 4x + 4} } \\  \\

 \to \: \sf{AP =  \sqrt{ {x}^{2}  - 4x + 8} } \\  \\

For finding distance BP:

  \sf{BP =  \sqrt{(x - ( - 4) {}^{2}  + (0 - 2) ^{2} } } \\  \\

 \dashrightarrow \:  \sf{BP =  \sqrt{(x + 4) ^{2}  +  {( - 2)}^{2} } } \\  \\

 \dashrightarrow  \:  \sf{BP =  \sqrt{ {x }^{2} + 16 + 8x + 4 } } \\  \\

\implies \sf{BP =  \sqrt{ {x}^{2} + 8x + 20 } } \\  \\

 \tt{Since \: AP = BP} \\

  \sf{\sqrt{ {x}^{2} - 4x + 8 }  =  \sqrt{ {x}^{2} + 8x + 20 } } \\  \\

 \tt{Squaring \: on \: both \: sides,} \\  \\

  \sf{{x}^{2}  - 4x + 8 =  {x}^{2}  + 8x + 20} \\

 \dashrightarrow \:  \sf{ 8 - 4x  = 8x + 20} \\

 \dashrightarrow \:  \sf{ - 8x - 4x = 20 - 8} \\

 \dashrightarrow  \:  \sf{ - 12x = 12} \\

 \implies \sf{x =  \dfrac{ - 12}{12} } \\  \\

 \therefore \boxed{ \bf{x =  - 1}} \\  \\

So, the required point on x axis is

P (-1, 0)

Similar questions