Math, asked by AarushiVKamat, 5 months ago

Find the point on y-axis whose distance from the point A(6,7) and B(4,-3) are in the ratio 1:2.
if u dont know the answer pls dont write any thing pls

Answers

Answered by Anonymous
3

Solution:-

 \rm \to \: on \: y \: axis \: point \: is \: (0,y)

Given point are

 \rm \to \: A(6,7) \:  \: and \:  \: B(4, - 3)

So

  \to\rm \: A = (6,7) \:  \: and  \:  \: P = \: (0,y)

Using distance formula

 \rm \to \: d =  \sqrt{(  x_2 -x_1)  {}^{2}  + (y_2 - y_1) {}^{2} }

So

 \rm \to \: AP=  \sqrt{(0 - 6) {}^{2} + (y - 7) {}^{2}  }

 \rm \to \: AP =  \sqrt{36 +  {y}^{2}  + 49  - 14y}

\rm \to \: AP =  \sqrt{   {y}^{2}  + 85  - 14y}

\to\rm \:  B= (4, - 3) \:  \: and  \:  \: P = \: (0,y)

 \rm \to \: BP =  \sqrt{(0 - 4) {}^{2} + (y + 3) {}^{2}  }

\rm \to \: BP =  \sqrt{16 + y ^{2}  + 9 + 6y }

\rm \to \: BP =  \sqrt{ y ^{2}  + 25 + 6y }

Given:-

 \rm \to \dfrac{AP}{BP}  =  \dfrac{1}{2}

 \rm \to \: 2AP = BP

put the value

 \rm \to \:2 \sqrt{   {y}^{2}  + 85  - 14y}  = \sqrt{ y ^{2}  + 25 + 6y }

 \rm  \:  \rm \to \:4 ( {y}^{2}  + 85  - 14y) =  (y ^{2}  + 25 + 6y )

 \rm \to4 {y}^{2}  + 340 - 56y =  {y}^{2}  + 25 + 6y

 \rm \to \: 3 {y}^{2}  + 315 - 62y = 0

 \rm \to \: 3 {y}^{2}  - 27y - 35y + 315 = 0

 \rm \to3y(y - 9) - 35(y - 9) = 0

 \rm \to(3y - 35)(y - 9) = 0

 \rm \to \: y =  \dfrac{35}{3}  \: and \: y = 9

So point are

 \rm \to(0, \dfrac{35}{3} ) \: and \: (0,9) \:

Similar questions