Math, asked by ubb70, 1 year ago

find the point which divides the line segment joining the points (3,5), and (8,10) internally in the ratio 2:3.

Answers

Answered by abhi569
16

 \frac{m_{1} }{ m_{2} }  =  \frac{2}{3}  \\  \\  \\  \\  m_{1} = 2 \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  m_{2} = 3





We Know,




x =  \frac{ m_{1}x _{2} +   m_{2}   x_{1}}{ m_{1} \:  +  \: m_{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y \:   =   \frac{ m_{1}y _{2} +   m_{2}   y_{1}}{ m_{1} \:  +  \: m_{2} }


Hence,




x =  \frac{(2 \times 8) + (3 \times 3)}{2 + 3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{(2 \times 10) + (3 \times 5)}{2  + 3}  \\  \\  \\ x =  \frac{16 + 9}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  y =  \frac{20 + 35}{5}  \\  \\  \\x =  \frac{25}{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{55}{5}



x = 5 and y = 11





Required Point = { 5 , 11 }

LilyWhite: thanks
abhi569: Welcome
Similar questions